首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33107篇
  免费   1100篇
  国内免费   43篇
化学   22967篇
晶体学   243篇
力学   589篇
数学   4547篇
物理学   5904篇
  2023年   265篇
  2022年   268篇
  2021年   437篇
  2020年   563篇
  2019年   528篇
  2018年   696篇
  2017年   640篇
  2016年   1255篇
  2015年   1015篇
  2014年   1026篇
  2013年   2107篇
  2012年   2320篇
  2011年   2487篇
  2010年   1456篇
  2009年   1234篇
  2008年   2131篇
  2007年   2098篇
  2006年   1824篇
  2005年   1684篇
  2004年   1339篇
  2003年   1042篇
  2002年   937篇
  2001年   715篇
  2000年   612篇
  1999年   445篇
  1998年   334篇
  1997年   255篇
  1996年   383篇
  1995年   253篇
  1994年   246篇
  1993年   287篇
  1992年   258篇
  1991年   181篇
  1990年   158篇
  1989年   141篇
  1988年   133篇
  1987年   133篇
  1986年   130篇
  1985年   190篇
  1984年   155篇
  1983年   127篇
  1982年   116篇
  1981年   106篇
  1980年   90篇
  1979年   105篇
  1978年   87篇
  1977年   80篇
  1976年   86篇
  1975年   76篇
  1973年   86篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Capillary Electrophoresis (CE) is becoming an ever more powerful analytical technique for the separation, identification, and quantification of a wide variety of compounds of interest in many application fields. Particularly in food analysis this technique can offer interesting advantages over chromatographic techniques because of its greater simplicity and efficiency. Nevertheless, CE needs to advance with regard to compatibility with sample matrices, sensitivity, and robustness of the methodologies in order to gain even wider acceptance in food analysis laboratories, specially for routine work. This article presents various approaches to expanding the analytical usefulness of CE in food analysis, discussing their advantages over conventional CE. These approaches focus on sample screening, automated sample preparation with on-line CE arrangements, and the automatic integration of calibration in routine analytical work with CE.  相似文献   
972.
The ultraviolet photolysis dynamics of Kr-HBr(v=0) is investigated by means of wave packet calculations, focusing on the fragmentation pathway Kr-HBr+ variant Planck's over 2pi omega-->H+Kr-Br. Photolysis is simulated by starting from two different cluster initial states, namely the ground van der Waals (vdW) and an excited vdW bending state, associated with the Kr-H-Br and Kr-Br-H isomers, respectively. The results show that, for the two initial states of the cluster, the Kr-Br product yield is lower than that of Ar-Br radicals found in previous studies on Ar-HBr photolysis. Despite this decrease, the Kr-Br yield is found to be still rather high, in particular for the initial excited vdW state of Kr-HBr(v=0). In addition, the Kr-Br product state distributions exhibit a remarkably higher excitation (mainly rotational) than the corresponding Ar-Br distributions. The lower yield and higher excitation of Kr-Br as compared to Ar-Br, are attributed to a larger share of the energy available for the radical going to internal excitation in the case of the Kr-Br product. The different partition of the energy available for Kr-Br also causes significant deviations in the photolysis behavior of Kr-HBr when compared to that of Ar-HBr, in the case of the initial excited vdW state of both clusters. A common feature of the photodissociation of Kr-HBr and Ar-HBr is the manifestation of quantum interference effects in the Kr-Br and Ar-Br rotational state distributions, in the form of pronounced structures of supernumerary rotational rainbows.  相似文献   
973.
A series of four subphthalocyanine-C(60) fullerene dyads have been prepared through axial functionalization of the macrocycle with m-hydroxybenzaldehyde and a subsequent dipolar cycloaddition reaction. The subphthalocyanine moiety has been peripherally functionalized with substituents of different electronic character, namely fluorine or iodine atoms and ether or amino groups, thus reaching a control over its electron-donating properties. This is evidenced in cyclic voltammetry experiments by a progressive shift to lower potentials, by ca. 200 mV, of the first oxidation event of the SubPc unit in the dyads. As a consequence, the energy level of the SubPc(*)(+)-C(60)(*)(-) charge-transfer state may be tuned so as to compete with energy transfer deactivation pathways upon selective excitation of the SubPc component. For instance, excitation of those systems where the level of the radical pair lies high in energy triggers a sequence of exergonic photophysical events that comprise (i) nearly quantitative singlet-singlet energy transfer to the C(60) moiety, (ii) fullerene intersystem crossing, and (iii) triplet-triplet energy transfer back to the SubPc. On the contrary, the stabilization of the SubPc(*)(+)-C(60)(*)(-) radical pair state by increasing the polarity of the medium or by lowering the donor-acceptor redox gap causes charge transfer to dominate. In the case of 1c in benzonitrile, the thus formed radical pair has a lifetime of 0.65 ns and decays via the energetically lower lying triplet excited state. Further stabilization is achieved for dyad 1d, whose charge-transfer state would lie now below both triplets. The radical pair lifetime consequently increases in more than 2 orders of magnitude with respect to 1c and presents a significant stabilization in less polar solvents, revealing a low reorganization energy for this kind of SubPc-C(60) systems.  相似文献   
974.
New bis‐ and tris(iminopyrrole)‐functionalized linear (1,2‐(HNC4H3‐C(H)?N)2‐C6H4 ( 2 ), 1,3‐(HNC4H3‐C(H)?N)2‐C6H4 ( 3 ), 1,4‐(HNC4H3‐C(H)?N)2‐C6H4 ( 4 ), 4,4′‐(HNC4H3‐C(H)?N)2‐(C6H4‐C6H4) ( 5 ), 1,5‐(HNC4H3C‐(H)?N)2‐C10H6 ( 6 ), 2,6‐(HNC4H3C‐(H)?N)2‐C10H6 ( 7 ), 2,6‐(HNC4H3C‐(H)?N)2‐C14H8 ( 8 )) and star‐shaped (1,3,5‐(HNC4H3‐C(H)?N‐1,4‐C6H4)3‐C6H3 ( 9 )) π‐conjugated molecules were synthesized by the condensation reactions of 2‐formylpyrrole ( 1 ) with several aromatic di‐ and triamines. The corresponding linear diboron chelate complexes (Ph2B[1,3‐bis(iminopyrrolyl)‐phenyl]BPh2 ( 10 ), Ph2B[1,4‐bis(iminopyrrolyl)‐phenyl]BPh2 ( 11 ), Ph2B[4,4′‐bis(iminopyrrolyl)‐biphenyl]BPh2 ( 12 ), Ph2B[1,5‐bis(iminopyrrolyl)‐naphthyl]BPh2 ( 13 ), Ph2B[2,6‐bis(iminopyrrolyl)‐naphthyl]BPh2 ( 14 ), Ph2B[2,6‐bis(iminopyrrolyl)‐anthracenyl]BPh2 ( 15 )) and the star‐shaped triboron complex ([4′,4′′,4′′′‐tris(iminopyrrolyl)‐1,3,5‐triphenylbenzene](BPh2)3 ( 16 )) were obtained in moderate to good yields, by the treatment of 3 – 9 with B(C6H5)3. The ligand precursors are non‐emissive, whereas most of their boron complexes are highly fluorescent; their emission color depends on the π‐conjugation length. The photophysical properties of the luminescent polyboron compounds were measured, showing good solution fluorescence quantum yields ranging from 0.15 to 0.69. DFT and time‐dependent DFT calculations confirmed that molecules 10 and 16 are blue emitters, because only one of the iminopyrrolyl groups becomes planar in the singlet excited state, whereas the second (and third) keeps the same geometry. Compound 13 , in which planarity is not achieved in any of the groups, is poorly emissive. In the other examples ( 11 , 12 , 14 , and 15 ), the LUMO is stabilized, narrowing the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO–LUMO), and the two iminopyrrolyl groups become planar, extending the size of the π‐system, to afford green to yellow emissions. Organic light‐emitting diodes (OLEDs) were fabricated by using the new polyboron complexes and their luminance was found to be in the order of 2400 cd m?2, for single layer devices, increasing to 4400 cd m?2 when a hole‐transporting layer is used.  相似文献   
975.
CYP19A1 aromatase is a member of the Cytochrome P450 family of hemeproteins, and is the enzyme responsible for the final step of the androgens conversion into the corresponding estrogens, via a three‐step oxidative process. For this reason, the inhibition of this enzyme plays an important role in the treatment of hormone‐dependent breast cancer. The first catalytic subcycle, corresponding to the hydroxilation of androstenedione, has been proposed to occur through a first hydrogen abstraction and a subsequent oxygen rebound step. In present work, we have studied the mechanism of the first catalytic subcycle by means of hybrid quantum mechanics/molecular mechanics methods. The inclusion of the protein flexibility has been achieved by means of Free Energy Perturbation techniques, giving rise to a free energy of activation for the hydrogen abstraction step of 13.5 kcal/mol. The subsequent oxygen rebound step, characterized by a small free energy barrier (1.5 kcal/mol), leads to the hydroxylated products through a highly exergonic reaction. In addition, an analysis of the primary deuterium kinetic isotopic effects, calculated for the hydrogen abstraction step, reveals values (~10) overpassing the semiclassical limit for the C? H, indicating the presence of a substantial tunnel effect. Finally, a decomposition analysis of the interaction energy for the substrate and cofactor in the active site is also discussed. According to our results, the role of the enzymatic environment consists of a transition state stabilization by means of dispersive and polarization effects. © 2015 Wiley Periodicals, Inc.  相似文献   
976.
The first investigation into the ultraviolet (UV) photoluminescence of gadolinium(III) in the presence of copper(II) is reported. A melt‐quenched barium phosphate glass was used as a model matrix. The optical spectroscopy assessment shows that with increasing CuO concentration the Cu2+ absorption band grows steadily, whereas the UV emission from Gd3+ ions is progressively quenched. The data, thus, suggests the existence of a Gd3+→Cu2+ energy‐transfer process ocurring through quantum cutting. A downconversion/cross‐relaxation pathway proceeding through a virtual state in Gd3+ is proposed. These findings suggest gadolinium(III) could potentially be used in the optical sensing of copper(II).  相似文献   
977.
The present research is focused on the determination of the enantiomeric distribution of chiral compounds, contained in mandarin essential oils, by means of conventional chiral gas chromatography with flame ionization detection (enantio-GC-FID); the results attained were compared with those derived from heart-cutting multidimensional GC-mass spectrometry (MDGC/MS), to evaluate the reliability of the monodimensional technique as a tool for quality control. The Deans-switch MDGC system was equipped with two GC ovens, which were connected via a heated transfer line, a flame ionization detector (FID1) in the first dimension and a quadrupole MS as second-dimension detector. The a priori knowledge of potential co-elutions concerning target compounds (an enantiomer and an interfering compound), when using enantio-GC-FID, could enable the use of corrected enantiomer excess values. Correction factors could be calculated through a preliminary GC-FID analysis (using an apolar column), considering the peak areas of the known interferences. The method used for the calculation of a so-called “coelution correction factor” is described, along with some examples.  相似文献   
978.
Pterins (also known as pteridines) are common animal colorants that constitute heterocyclic compounds and have the highest nitrogen content of any pigment analyzed from animals. It has been reported that pterins modulate oxidative stress as these molecules are able to scavenge free radicals. Previous reports suggest three possible mechanisms that are responsible for scavenging free radicals; these are electron transfer (ET) reaction, hydrogen atom transfer (HAT) and radical addition. In this paper, the facility to scavenge free radicals (antiradical power) of pterins is analyzed, using density functional theory calculations and considering two possible mechanisms: ET and HAT. For the electron transfer process, considering the electron donor facility of the free radical scavenger molecules, vertical ionization energy of pterins indicates that the antiradical power of those pterins is lower than the antiradical power of any carotenoids (except for tetrahydrobiopterin). In terms of the HAT mechanism, the bond dissociation energy involved in the removal of one hydrogen atom from pterins is higher than for carotenoids (except for sepiapterin and 7,8-dihydrobiopterin). It can be expected that the most reactive molecules are those that have the smallest dissociation energy since the dissociation of the hydrogen atom is the first step of the reaction. This could indicate that some pterins are depicted as poorer antiradicals than carotenoids in terms of the HAT mechanism. Further studies focusing on the third mechanism (radical addition) and the kinetics of the reactions are necessary in order to fully understand the antiradical power of these substances. For this reason, work continues in order to clarify these aspects.  相似文献   
979.
980.
In this communication the evaluation of eleven new metallocomplex alanine synthons bearing C2-symmetric benzyl groups with electron-donating and electron-withdrawing substituents is described. α-Methylated glycine synthons (alanine complexes) were evaluated alongside alanine synthons in order to obtain a deeper understanding of the relationship between their structures and stereochemistry of monoalkylated products and to choose several candidates for their further tests for stereospecific preparation of 6-[18F]FDOPA. Glycine-derived analogues of the complexes 3–5 are the best candidates for the development of a 6-[18F]FDOPA preparation procedure. In the model epimerisation reaction they demonstrated the best performance, much better compared to the previously described compound 2. Complexes 3, 5 and 8 are the best in asymmetric preparation of β-13C monolabelled α-aminoisobutyric acid. They have to be tested in the preparation of α-methyl amino acids like 6-[18F]-α-methylDOPA and 2-[18F]-α-methyltyrosine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号