首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2462篇
  免费   63篇
  国内免费   8篇
化学   1595篇
晶体学   42篇
力学   93篇
数学   571篇
物理学   232篇
  2023年   10篇
  2022年   33篇
  2021年   64篇
  2020年   41篇
  2019年   47篇
  2018年   31篇
  2017年   22篇
  2016年   66篇
  2015年   67篇
  2014年   53篇
  2013年   119篇
  2012年   109篇
  2011年   150篇
  2010年   97篇
  2009年   84篇
  2008年   128篇
  2007年   107篇
  2006年   136篇
  2005年   125篇
  2004年   109篇
  2003年   91篇
  2002年   79篇
  2001年   30篇
  2000年   15篇
  1999年   26篇
  1998年   20篇
  1997年   20篇
  1996年   42篇
  1995年   26篇
  1994年   31篇
  1993年   25篇
  1992年   21篇
  1991年   21篇
  1990年   21篇
  1989年   11篇
  1988年   17篇
  1987年   14篇
  1986年   8篇
  1985年   25篇
  1984年   15篇
  1983年   20篇
  1982年   22篇
  1981年   20篇
  1980年   31篇
  1979年   26篇
  1978年   17篇
  1976年   15篇
  1975年   12篇
  1915年   9篇
  1906年   7篇
排序方式: 共有2533条查询结果,搜索用时 109 毫秒
71.
The acid‐catalyzed reaction between formaldehyde and 1H‐indene, 3‐alkyl‐ and 3‐aryl‐1H‐indenes, and six‐membered‐ring substituted 1H‐indenes, with the 1H‐indene/CH2O ratio of 2 : 1, at temperatures above 60° in hydrocarbon solvents, yields 2,2′‐methylenebis[1H‐indenes] 1 – 8 in 50–100% yield. These 2,2′‐methylenebis[1H‐indenes] are easily deprotonated by 2 equiv. of BuLi or MeLi to yield the corresponding dilithium salts, which are efficiently converted into ansa‐metallocenes of Zr and Hf. The unsubstituted dichloro{(1,1′,2,2′,3,3′,3a,3′a,7a,7′a‐η)‐2,2′‐methylenebis[1H‐inden‐1‐yl]}zirconium ([ZrCl2( 1′ )]) is the least soluble in organic solvents. Substitution of the 1H‐indenyl moieties by hydrocarbyl substituents increases the hydrocarbon solubility of the complexes, and the presence of a substituent larger than a Me group at the 1,1′ positions of the ligand imparts a high diastereoselectivity to the metallation step, since only the racemic isomers are obtained. Methylene‐bridged ‘ansa‐zirconocenes’ show a noticeable open arrangement of the bis[1H‐inden‐1‐yl] moiety, as measured by the angle between the planes defined by the two π‐ligands (the ‘bite angle’). In particular, of the ‘zirconocenes’ structurally characterized so far, the dichloro{(1,1′,2,2′,3,3′,3a,3′a,7a,7′a‐η)‐2,2′‐methylenebis[4,7‐dimethyl‐1H‐inden‐1‐yl]}zirconium ([ZrCl2( 5′ )] is the most open. The mixture [ZrCl2( 1′ )]/methylalumoxane (MAO) is inactive in the polymerization of both ethylene and propylene, while the metallocenes with substituted indenyl ligands polymerize propylene to atactic polypropylene of a molecular mass that depends on the size of the alkyl or aryl groups at the 1,1′ positions of the ligand. Ethene is polymerized by rac‐dichloro{(1,1′,2,2′,3,3′,3a,3′a,7a,7′a‐η)‐2,2′‐methylenebis[1‐methyl‐1H‐inden‐1‐yl]}zirconium ([ZrCl2( 2′ )])/MAO to polyethylene waxes (average degree of polymerization ca. 100), which are terminated almost exclusively by ethenyl end groups. Polyethylene with a high molecular mass could be obtained by increasing the size of the 1‐alkyl substituent.  相似文献   
72.
The reaction of Ir6(CO)16 with a mixture of CO, H2, and ethylene yields the [Ir6(CO)15COEt]- anion, which has been shown by X-ray diffraction to contain an octahedral iridium cluster bearing a —bonded acyl group; the arrangement of the 11 terminal and 4 edge-bridging carbonyl groups is different from that found in both the analogous rhodium complex and the parent Ir6(CO)16 carbonyl.  相似文献   
73.
The effect of strain in the axial coordination of imidazole to the heme has been studied in the chelate complexes deuterohemin-histidine (DH-His) and deuterohemin-alanylhistidine (DH-AlaHis). Molecular mechanics calculations indicate that three types of distortion of the axial ligand occur in DH-His, due to the relatively short length of the arm carrying the donor group: tilting off-axis, tipping, and inclination of the imidazole plane with respect to the axial Fe-N bond. The effects of tilting (Deltagamma approximately 10 degrees ) and inclination of the imidazole ring (Deltadelta approximately 17 degrees ) are dominant, while tipping is small and is probably of little importance here. By contrast, the axial imidazole coordination is normal in DH-AlaHis and other computed deuterohemin-dipeptide or -tripeptide complexes where histidine is the terminal residue, the only exception being DH-ProHis, where the rigidity of the proline ring reduces the flexibility of the chelating arm. The distortion in the axial iron-imidazole bond in DH-His has profound and negative influence on the binding and catalytic properties of this complex compared to DH-AlaHis. The former complex binds more weakly carbon monoxide, in its reduced form, and imidazole, in its oxidized form, than the latter. The catalytic efficiency in peroxidative oxidations is also reduced in DH-His with respect to DH-AlaHis. The activity of the latter complex is similar to that of microperoxidase-11, the peptide fragment incorporating the heme that results from hydrolytic cleavage of cytochrome c.  相似文献   
74.
The photolysis of a benzene solution of [Tp(Me2)IrH(2)(COE)], 1 (Tp(Me2) = hydrotris(3,5-dimethylpyrazolyl)borate, COE = Z-cyclooctene), in the presence of P(OMe)(3), gives the stable novel complex [Tp(Me2)IrH(C(6)H(5))(P(OMe)(3))], 3a. The photochemical syntheses of [Tp(Me2)IrH(2)(P(OMe)(3))], from 1 and P(OMe)(3) in diethyl ether, and [Tp(Me2)IrH(2)(CH(2)=CHCOO(t)Bu)], from 1 in tert-butyl acrylate, are also reported. The above reactions and several experiments using C(6)D(6) and P(OCD(3))(3) show that, in all cases, the primary photoproduct is the 16-electron, five-coordinate iridium(III) intermediate {Tp(Me2)IrH(2)}, 6a, produced by loss of COE from 1. The above experiments also allow the postulation of a mechanistic pathway for the formation of 3a which involves the oxidative addition of an aromatic C-H bond by 6a. Furthemore, the photochemical reaction of 1 in the presence of P(OCD(3))(3) shows that, under the reaction conditions used, oxidative addition of C-H bonds of P(OMe)(3) and of coordinated Tp(Me2)-ligands, presumably, to the intermediates 6a and {Tp(Me2)IrH(C(6)H(5))}, also occurs. Thus, coordinatively unsaturated iridium(III) species readily activate C-H bonds.  相似文献   
75.
The cisplatin anticancer drug preferentially attacks the GG sequence of DNA duplexes. Virtually all DNAs containing the key G*G* lesion (G* = N7 platinated G) have large distortions in the cross-link (G*G*) base pair (bp) step and also in the adjacent Lippard (XG*) bp step, making the adducts very different from B-form DNA in the XG*G* region. The XG*G* strand in duplexes also differs in several ways from single-strand (ss) models with G*G* and XG*G* sequences. In the duplex, the X residue has an N sugar, the 5'-G* and 3'-G* bases have slight "R" canting (3'-G* H8 atom toward the 5'-G* base), and there is no or weak H-bonding by the NH3 ligands. In most XG*G* ss models, X has an S sugar, the 5'-G* base normally cants strongly toward the 3'-G* base (L canting), and the NH3 forms an H-bond. Well-defined ss models exist in the solid state, but dynamic motion obscures the properties of the ss models in solution. In this work, we employ retro models (better defined, less dynamic ss models) to understand the differences between duplex and ss models. The retro models in this study lack carrier ligand NH's, thus eliminating H-bonding. To correlate previous ss solid-state models with our solution work, we constructed hybrid molecules by overlaying parts of known structures. The combined model and experimental information indicates that the X N-pucker is not favorable in L-canted ss models, that X residue steric effects (not H-bonding) favor L canting in ss models, that X N-pucker is needed for favorable WC hydrogen bonding and stacking interactions in duplexes, and that X N-pucker minimizes X base clashes with bases in the complementary strand in duplexes. The R canting minimizing clashes between the X and G* residues of the Lippard bp step (independent of X pucker) and the repositioning of the X residue base caused by the change from S-pucker to N-pucker together lead to the unusual features of the Lippard bp step in the duplex.  相似文献   
76.
General methods for preparing Re(V)O complexes with a novel series of thiol-amide-thiourea (TATU) ligands, a new class of N(2)S(2) chelates, were developed. The TATU ligands, the first multidentate systems designed with a bidentate thiourea moiety, have been used to prepare the first high-valent transition metal complexes with bidentate thiourea coordination. Direct reaction of N-(2-aminoethyl)-2-((triphenylmethyl)thio)acetamide (1) with phenyl, 4-methoxyphenyl, 4-chlorophenyl, and methyl isothiocyanate afforded ready access to the corresponding S-protected TATU ligands in one step. A two-step preparation of the N,N-dimethylthiourea TATU ligand derived from 1 was also developed. Deprotection of thiols in trifluoroacetic acid with triethylsilane followed by a ligand exchange reaction with Re(V)O precursors yielded neutral ReO(TATU) complexes. The structure of [1-phenyl-3-[2-((2-thioacetyl)amino)ethyl]thioureato]oxorhenium(V) (6a) was determined by X-ray diffraction methods. Crystal data for 6a: C(11)H(12)N(3)O(2)ReS(2), fw 468.6, orthorhombic, Pca2(1); a = 22.605(5) ?, b = 13.029(3) ?, c= 9.698(2) ?; V = 2856.3(11) ?(3); Z = 8. The coordination environment of 6a was pseudo-square-pyramidal with a deprotonated thiol S, deprotonated amide N, deprotonated thiourea N, and thiocarbonyl S coordinated in the basal plane and the oxo ligand in the apical position. The thiourea function forms a four-membered chelate ring in the multidentate TATU ligands. The two N-C and the S-C bond distances within the monodeprotonated thiourea moiety were typical of bonds with multiple-bond character. Solution (1)H NMR data for all five complexes were consistent with the solid-state structure of 6a. A broad singlet attributable to the uncoordinated NH group of thiourea was observed for the monosubstituted thiourea complexes but was not present for the N,N-dimethylthiourea derivative. Instead, two singlets of equal intensity were observed for the two methyl groups, indicating that there is restricted rotation around the C-N(CH(3))(2) bond and an extended pi system in the thiourea moiety. The four-membered ring might cause difficulty because the M-S distance would be relatively long in an undistorted ligand. This may be the reason such chelate ligands have not been previously investigated. However, the N-C-S angle narrows to approximately 105 degrees, permitting a Re-S bond with a typical bond length to be formed. We conclude that such a ring represents a versatile new building block to create multidentate ligands.  相似文献   
77.
The preparation of some 3,7-disubstituted-5,6-dihydroquino[3,2-c][1,8]naphthyridines ( 6 ) by the condensation of 7-substituted-2,3-dihydro-1,8-naphthyridin-4-(1H)ones ( 5 ) with o-aminoacetophenone or o-aminobenzophenone is described. All the 5,6-dihydroderivatives 6 were transformed into the fully aromatic compounds 7 by heating with nitrobenzene. Only a few quino[3,2-c][1,8]naphthyridines were previously described.  相似文献   
78.
Comprehensive two-dimensional (2D) chromatographic techniques can be considered innovative methods, only quite recently developed. Since their introduction to the chromatographic community, these techniques have been used in several fields and have gained an excellent reputation as valuable and powerful analytical tools. The revolutionary aspect of comprehensive multidimensional (MD) techniques, in respect to classical MD chromatography, is that the entire sample is subjected to the 2D advantage. The resulting unprecedented separating capacity makes these approaches prime choices when analysts are challenged with highly complex mixtures. Furthermore, in the case of automated systems, instrumental analysis times are roughly the same as in monodimensional applications. The present review reports various comprehensive chromatographic applications on different food matrices. The GC x GC section highlights two fundamental aspects for component separation/identification: the exceptional peak capacity and the formation of group types on the 2D space plane. The LC x LC section reports the employment in food analysis of a recently developed multidimensional normal-phase (NP)-reversed-phase (RP) high performance liquid chromatography (HPLC) system. Also reported are comprehensive LC x GC and packed column supercritical fluid chromatography (pSFC x pSFC) applications in this field.  相似文献   
79.
Pressurized Fluid Extraction (PFE) was evaluated for the extraction of polycyclic aromatic hydrocarbons (PAHs) and nitro-derivatives from diesel particulate matter. Extraction conditions were set up by performing several tests in which temperature, solvent strength, pressure, and static time were gradually increased. The results obtained on a laboratory test material made of a "lean" (low content of soluble fraction) Diesel particulate matter indicate that very severe conditions were needed in order to obtain better recoveries of the higher molecular weight molecules. Moreover, extraction efficiency seems to be influenced by the amount of soluble matter in the particulate, so that a "lean" particulate appears more difficult to extract. Recoveries of the deuterated standards of certain PAHs (i.e. indeno[1,2,3- cd]pyrene) were incomplete even with the toughest conditions tested. Experiments carried out on a certified material (SRM 1650 from NIST) also indicate that PFE can perform a better extraction of some of the PAHs than the method used for certification, but still incomplete. Comparison of results obtained on the SRM with different extraction techniques suggests that the composition of the extract varies considerably with the extraction technique and conditions. It is relevant to notice that recent Diesel engines produce leaner particulate: for future materials more drastic extraction conditions will be required.  相似文献   
80.
Electron spin-echo envelope modulation (ESEEM) spectroscopy of phospholipids spin-labeled systematically down the sn-2 chain was used to detect the penetration of water (D2O) into bilayer membranes of dipalmitoyl phosphatidylcholine with and without 50 mol % cholesterol. Three-pulse stimulated echoes allow the resolution of two superimposed 2H-ESEEM spectral components of different widths, for spin labels located in the upper part of the lipid chains. Quantum chemical calculations (DFT) and ESEEM simulations assign the broad spectral component to one or two D2O molecules that are directly hydrogen bonded to the N-O group of the spin label. Classical ESEEM simulations establish that the narrow spectral component arises from nonbonded water (D2O) molecules that are free in the hydrocarbon chain region of the bilayer membrane. The amplitudes of the broad 2H-ESEEM spectral component correlate directly with those of the narrow component for spin labels at different positions down the lipid chain, reflecting the local H-bonding equilibria. The D2O-ESEEM amplitudes decrease with position down the chain toward the bilayer center, displaying a sigmoidal dependence on position that is characteristic of transmembrane polarity profiles established by other less direct spin-labeling methods. The midpoint of the sigmoidal profile is shifted toward the membrane center for membranes without cholesterol, relative to those with cholesterol, and the D2O-ESEEM amplitude in the outer regions of the chain is greater in the presence of cholesterol than in its absence. For both membrane types, the D2O amplitude is almost vanishingly small at the bilayer center. The water-penetration profiles reverse correlate with the lipid-chain packing density, as reflected by 1H-ESEEM intensities from protons of the membrane matrix. An analysis of the H-bonding equilibria provides essential information on the binding of water molecules to H-bond acceptors within the hydrophobic interior of membranes. For membranes containing cholesterol, approximately 40% of the nitroxides in the region adjacent to the lipid headgroups are H bonded to water, of which ca. 15% are doubly H bonded. Corresponding H-bonded populations in membranes without cholesterol are ca. 20%, of which ca. 6% are doubly bonded.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号