Fabricating mechanically strong hydrogels that can withstand the conditions in internal tissues is a challenging task. We have designed hydrogels based on multicomponent systems by combining chitosan, starch/cellulose, PVA, and PEDOT:PSS via one-pot synthesis. The starch-based hydrogels were homogeneous, while the cellulose-based hydrogels showed the presence of cellulose micro- and nanofibers. The cellulose-based hydrogels demonstrated a swelling ratio between 121 and 156%, while the starch-based hydrogels showed higher values, from 234 to 280%. Tensile tests indicated that the presence of starch in the hydrogels provided high flexibility (strain at break?>?300%), while combination with cellulose led to the formation of stiffer hydrogels (elastic moduli 3.9–6.6 MPa). The ultimate tensile strength for both types of hydrogels was similar (2.8–3.9 MPa). The adhesion and growth of human osteoblast-like SAOS-2 cells was higher on hydrogels with cellulose than on hydrogels with starch, and was higher on hydrogels with PEDOT:PSS than on hydrogels without this polymer. The metabolic activity of cells cultivated for 3 days in the hydrogel infusions indicated that no acutely toxic compounds were released. This is promising for further possible applications of these hydrogels in tissue engineering or in wound dressings.
For the design of a biohybrid structure as a ligand‐tailored drug delivery system (DDS), it is highly sophisticated to fabricate a DDS based on smoothly controllable conjugation steps. This article reports on the synthesis and the characterization of biohybrid conjugates based on noncovalent conjugation between a multivalent biotinylated and PEGylated poly(amido amine) (PAMAM) dendrimer and a tetrameric streptavidin‐small protein binding scaffold. This protein binding scaffold (SA‐ABDwt) possesses nM affinity toward human serum albumin (HSA). Thus, well‐defined biohybrid structures, finalized by binding of one or two HSA molecules, are available at each conjugation step in a controlled molar ratio. Overall, these biohybrid assemblies can be used for (i) a controlled modification of dendrimers with the HSA molecules to increase their blood‐circulation half‐life and passive accumulation in tumor; (ii) rendering dendrimers a specific affinity to various ligands based on mutated ABD domain, thus replacing tedious dendrimer–antibody covalent coupling and purification procedures.
Conducting polymer polyaniline which is nowadays in forefront of the interest was in our study prepared in a form of thin films from anilinium sulfate by its chemical oxidation using ammonium peroxydisulfate. During the oxidation process, the polyaniline was deposited on glass slides and immersed into reaction mixture. Two sets of polyaniline thin films were prepared with different oxidation times (10, 20, 30, and 40 min). The first set was kept dry in desiccator and the second one was freely exposed to air moisture. Raman spectroscopy, nondestructive technique which is very sensitive to changes in structure of polymers, was used for the characterization of the protonation state of prepared polyaniline thin films. It was found that storage conditions affect the protonation state which in case of samples kept in desiccator is maintained without significant changes for longer time. Raman spectroscopy also revealed the dependence of protonation state on the oxidation time and 10 min proved as not sufficient for the creation of the protonation form of polyaniline. 相似文献
The repetition of urea-based binding units within the receptor structure does not only lead to monomer properties multiplication. As confirmed by spectroscopic studies, UV-Vis and 1H-NMR in classical or competitive titration mode, the attachment to a carrier allocates the active moieties to mutual positions predetermining the function of the whole receptor molecule. Bivalent receptors form self-aggregates. Dendritic receptors with low dihydrogen phosphate loadings offer a cooperative complexation mode associated with a positive dendritic effect. In higher dihydrogen phosphate concentrations, the dendritic branches act independently and the binding mode changes to 1:1 anion: complexation site. Despite the anchoring, the dendritic receptors retain the superior efficiency and selectivity of a monomer, paving the way to recyclable receptors, desirable for economic and ecological reasons. 相似文献
The intercalation of cations into layered-structure electrode materials has long been studied in depth for energy storage applications. In particular, Li+-, Na+-, and K+-based cation transport in energy storage devices such as batteries and electrochemical capacitors is closely related to the capacitance behavior. We have exploited different sizes of cations from aqueous salt electrolytes intercalating into a layered Nb2CTx electrode in a supercapacitor for the first time. As a result, we have demonstrated that capacitive performance was dependent on cation intercalation behavior. The interlayer spacing expansion of the electrode material can be observed in Li2SO4, Na2SO4, and K2SO4 electrolytes with d-spacing. Additionally, our results showed that the Nb2CTx electrode exhibited higher electrochemical performance in the presence of Li2SO4 than in that of Na2SO4 and K2SO4. This is partly because the smaller-sized Li+ transports quickly and intercalates between the layers of Nb2CTx easily. Poor ion transport in the Na2SO4 electrolyte limited the electrode capacitance and presented the lowest electrochemical performance, although the cation radius follows Li+>Na+>K+. Our experimental studies provide direct evidence for the intercalation mechanism of Li+, Na+, and K+ on the 2D layered Nb2CTx electrode, which provides a new path for exploring the relationship between intercalated cations and other MXene electrodes. 相似文献
This study identified the isoindolone ring as a scaffold for novel agents against Trypanosoma brucei rhodesiense and explored the structure-activity relationships of various aromatic ring substitutions. The compounds were evaluated in an integrated in vitro screen. Eight compounds exhibited selective activity against T. b. rhodesiense (IC50<2.2 μm ) with no detectable side activity against T. cruzi and Leishmania infantum. Compound 20 showed low nanomolar potency against T. b. rhodesiense (IC50=40 nm ) and no toxicity against MRC-5 and PMM cell lines and may be regarded as a new lead template for agents against T. b. rhodesiense. The isoindolone-based compounds have the potential to progress into lead optimization in view of their highly selective in vitro potency, absence of cytotoxicity and acceptable metabolic stability. However, the solubility of the compounds represents a limiting factor that should be addressed to improve the physicochemical properties that are required to proceed further in the development of in vivo-active derivatives. 相似文献
We present a linear-optical implementation of a class of two-qubit partial SWAP gates for polarization states of photons. Different gate operations, including the SWAP and entangling sqrt[SWAP], can be obtained by changing a classical control parameter, namely, the path difference in the interferometer. Reconstruction of output states, full quantum process tomography, and an evaluation of entanglement of formation prove very good performance of the gates. 相似文献
The interaction of Love waves with square array of pillars deposited on a cavity defined in a 2D holey phononic crystal is numerically investigated using Finite Element Method. First, the existence of SH surface modes is demonstrated separately for phononic crystals that consist of square arrayed holes, or rectangular arrayed Ni pillars, respectively in, or on, a SiO2 film deposited on a ST-cut quartz substrate. The coupling between SH modes and torsional mode in pillars induces a transmission dip that occurs at a frequency located in the range of the band-gap of the holey phononic crystal. Second, a cavity is constructed by removing lines of holes in the holey phononic crystal and results in a transmission peak that matches the dip. The optimal geometrical parameters enable us to create a coupling of the cavity mode and the localized pillar mode by introducing lines of pillars into the cavity, which significantly improved the efficiency of the cavity without increasing the crystal size. The obtained results will pave the way to implement advanced designs of high-performance electroacoustic sensors based on coupling modes in phononic crystals. 相似文献
The effect of non‐thermal plasma generated by the direct current (DC) corona discharge in the mode of transition spark is studied on a yeast Saccharomyces cerevisiae. The exposure to plasma increases production of reactive oxygen species (ROS) in cells, possibly causing the induction of apoptosis. To clarify the mechanism of apoptosis, its induction is tested not only on a wild strain of S. cerevisiae, but also on mutant strains: A deletion mutant Δyca1 without yeast metacaspase proves that in S. cerevisiae the apoptosis occurs partly by the caspase‐independent pathway. A petite strains with mutation in the mitochondria do not show pronounced ROS formation, but in spite of this, apoptosis is detected. Hence, mitochondrial ROS probably do not play an important role in induction of apoptosis. 相似文献