Herein, we report the enantio‐ and diastereoselective formation of trans‐iodo‐ and trans‐chlorocyclopropanes from α‐iodo‐ and α‐chlorozinc carbenoids by using a dioxaborolane‐derived chiral ligand. The synthetically useful iodocyclopropane building blocks were derivatized by an electrophilic trapping of the corresponding cyclopropyl lithium species or a Negishi coupling to give access to a variety of enantioenriched 1,2,3‐substituted cyclopropanes. The synthetic utility of this method was demonstrated by the formal synthesis of an HIV‐1 protease inhibitor. In addition, the related stereoselective bromocyclopropanation was also investigated. New insights about the relative electrophilicity of haloiodomethylzinc carbenoids are also presented. 相似文献
A novel and selective stability-indicating liquid chromatographic method has been developed and validated for the analysis of dimethindene maleate, the related substance 2-ethylpyridine, and three degradation products. Dimethindene maleate was subjected to forced degradation study by acid and basic hydrolysis, oxidation, and thermal decomposition. Three degradation products that were formed during the forced degradation study were separated from dimethindene using a Zorbax SB CN column (150 × 4.6 mm; 5 μm); cyanopropyl-bonded stationary phase was applied for the first time for the separation of dimethindene and its impurities. The proposed method was validated and was found suitable for quality control and stability tests of pharmaceuticals containing dimethindene maleate.
This work depicts the original combination of electrochemiluminescence (ECL) and bipolar electrochemistry (BPE) to map in real-time the oxidation of silicon in microchannels. We fabricated model silicon-PDMS microfluidic chips, optionally containing a restriction, and monitored the evolution of the surface reactivity using ECL. BPE was used to remotely promote ECL at the silicon surface inside microfluidic channels. The effects of the fluidic design, the applied potential and the resistance of the channel (controlled by the fluidic configuration) on the silicon polarization and oxide formation were investigated. A potential difference down to 6 V was sufficient to induce ECL, which is two orders of magnitude less than in classical BPE configurations. Increasing the resistance of the channel led to an increase in the current passing through the silicon and boosted the intensity of ECL signals. Finally, the possibility of achieving electrochemical reactions at predetermined locations on the microfluidic chip was investigated using a patterning of the silicon oxide surface by etched micrometric squares. This ECL imaging approach opens exciting perspectives for the precise understanding and implementation of electrochemical functionalization on passivating materials. In addition, it may help the development and the design of fully integrated microfluidic biochips paving the way for development of original bioanalytical applications. 相似文献
This work aims at presenting the viscoelastic behavior of bio‐mimetic monoglycerides used as emulsifier in a mixture made of two non‐miscible liquids, squalene and water. The measurement of the interfacial tension, carried out by the “pendant drop” method in “dynamic” mode, made it possible to characterize these amphiphilic molecules according to the value of their elastic modulus, ?, as well as their relaxation time, τR. The analysis of these parameters, as well as those developed in the previous publication [L. Blasco et al. (2006) Skin constituents as cosmetic ingredients. Part I: A Study of bio‐mimetic monoglyceride behavior at the squalene‐water interface by the “pendant drop” method in a static mode. J. Dispers. Sci. Technol., 27(6).] shows that the hydrocarbon chain structure, such as its length, the presence of one or more unsaturations, hydroxyl function, affects the behavior of surfactant molecules at the squalene/water interface. 相似文献
Twelve self-sustaining nonagenarians, 10 women and two men, aged 94+/-3 years, and eight institutionalised nonagenarians, eight women, aged 91+/-1 year as well as 11 control subjects, seven women and four men, aged 84+/-5 years entered the study. Urinary neopterin, an indicator of systemic immune activation, and serum thiobarbituric acid reactive substances (TBARS), a marker of lipoperoxidation, were determined initially, and collection of the blood and urine samples was repeated at 3-month interval. Neopterin was measured in the urine specimens by reversed-phase high performance liquid chromatography. A C(18) reversed-phase column 3.3x150 mm, 5 mum-diameter packing Separon SGX was used. Potassium phosphate buffer (15 mmol l(-1), pH 6.4) at flow rate of 0.8 ml min(-1) was used as mobile phase. After centrifugation (5 min, 1300xg) and diluting 100 mul of urine specimens with 1.0 ml of mobile phase containing 2 g of disodium-EDTA per litre, a 20 mul sample was injected on a column. Neopterin was identified by its native fluorescence (353 nm excitation, 438 nm emission). Creatinine was determined by Jaffé kinetic reaction after dilution of sample 1:50 (v/v). The concentration of neopterin in urine was expressed as neopterin/creatinine ratio (mumol mol(-1) creatinine). TBARS were determined spectrofluorometrically using LS-5 spectrofluorimeter (excitation wavelength 528 nm, emission wavelength 558 nm) after extraction with n-butanol treatment with thiobarbituric acid. The significance of differences between nonagenarians and control group was examined by ANOVA-Kruskal-Wallis tests, using statistical software NCSS 6.0.21 (Kaysville, UT, 1996). The decision on significance was based on P=0.05. Urinary neopterin was significantly higher in institutionalised compared to self-sustaining subjects and controls (625+/-565 vs. 203+/-63 mumol mol(-1) creatinine, and 198+/-128 mumol mol(-1) creatinine, respectively, P=0.006). The serum TBARS were higher in both groups of nonagenarians (3.23+/-1.16 mumol l(-1) and 2.69+/-0.39 vs. 2.12+/-0.83 mumol l(-1) for the self-sustaining, institutionalised and controls, respectively, P=0.023). We conclude that the fluorimetric determinations of urinary neopterin and serum TBARS can be useful for the monitoring health status in the elderly patients. 相似文献
A series of new [NiX(S2P{O-c-Hex}2)(PPh3)](X = Cl–, Br–, I– and NCS–)(1)–(4) and [Ni(NCS)(S2P{OR}2)(PPh3)][R =n-Pr (5), i-Pr (6)] complexes has been synthesized and characterized by elemental analyses, f.i.r., i.r., u.v.–vis., 1H-, 13C{1H}- and 31P{1H}-n.m.r. spectra, magnetochemical and conductivity measurements. A single crystal X-ray analysis of [Ni(NCS)(S2P{O-n-Pr}2)(PPh3)](5) reveals the molecular structure of the complex and confirms a square-planar geometry around the central atom of nickel with the NCS anion coordinated via the nitrogen atom. 相似文献
A combination of 10 % CoCl2 and 20 % 2,2′‐bipyridine ligands enables cross‐coupling of functionalized primary and secondary alkylzinc reagents with various (hetero)aryl halides. Couplings with 1,3‐ and 1,4‐substituted cycloalkylzinc reagents proceeded diastereoselectively leading to functionalized heterocycles with high diastereoselectivities of up to 98:2. Furthermore, alkynyl bromides react with primary and secondary alkylzinc reagents providing the alkylated alkynes. 相似文献
The proper choice of exposure times is critical if the freely dissolved concentration of chemicals in soil porewater is to be measured via the equilibrium solid-phase microextraction (SPME) as the times to equilibrium may vary depending on compound and soil properties. To reveal the effects of compound hydrophobicity, ageing and soil organic matter content on times to equilibrium, the SPME uptake was measured for five freshly added and aged hydrophobic organic compounds (phenanthrene, pyrene, lindane, p,p′-DDT and polychlorinated biphenyl (PCB) 153) in two contrasted soils (arable and forest soil). The tested compound-soil systems behaved kinetically different. Longer equilibrium times were observed with increasing hydrophobicity of compounds for aged compared to freshly added chemicals and for the forest soil in comparison to the arable soil. The calculated soil–porewater partition coefficients (i.e. sorption coefficients, Kd) of chemicals differed between soil types mainly due to various organic carbon (OC) contents as evidenced by the comparable Koc values (i.e. Kd values normalised to soil OC content). Similar Koc values were also found with the various extent of ageing, indicating that both the freshly added and aged compounds linearly partitioned between the soil organic matter and porewater. Our results suggest that, for a respective compound, variations in equilibrium times may be expected depending upon the residence time and the organic matter content in soil where the longest equilibrium times seems to appear for a combination of aged compounds and high organic soils. With regard to this outcome, the effect of the level of sample depletion due to the SPME extraction (LDSPME) on equilibrium times was assessed. At LDsSPME of up to 10%, equilibrium times increases linearly with LDsSPME for p,p′-DDT and PCB 153. For phenanthrene (LDSPME<10%), and for lindane and pyrene (1.2% < LDSPME > 40%), no clear relationships were observed. 相似文献
An innovative strategy is proposed to synthesize single-crystal nanowires (NWs) of the Al3+ dicarboxylate MIL-69(Al) MOF by using graphene oxide nanoscrolls as structure-directing agents. MIL-69(Al) NWs with an average diameter of 70±20 nm and lengths up to 2 μm were found to preferentially grow along the [001] crystallographic direction. Advanced characterization methods (electron diffraction, TEM, STEM-HAADF, SEM, XPS) and molecular modeling revealed the mechanism of formation of MIL-69(Al) NWs involving size-confinement and templating effects. The formation of MIL-69(Al) seeds and the self-scroll of GO sheets followed by the anisotropic growth of MIL-69(Al) crystals are mediated by specific GO sheets/MOF interactions. This study delivers an unprecedented approach to control the design of 1D MOF nanostructures and superstructures. 相似文献