首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2996篇
  免费   122篇
  国内免费   17篇
化学   1803篇
晶体学   5篇
力学   131篇
数学   644篇
物理学   552篇
  2023年   30篇
  2022年   65篇
  2021年   129篇
  2020年   74篇
  2019年   93篇
  2018年   68篇
  2017年   52篇
  2016年   115篇
  2015年   111篇
  2014年   126篇
  2013年   192篇
  2012年   226篇
  2011年   251篇
  2010年   148篇
  2009年   110篇
  2008年   204篇
  2007年   174篇
  2006年   161篇
  2005年   168篇
  2004年   115篇
  2003年   107篇
  2002年   94篇
  2001年   38篇
  2000年   32篇
  1999年   25篇
  1998年   15篇
  1997年   28篇
  1996年   23篇
  1995年   20篇
  1994年   19篇
  1993年   13篇
  1992年   9篇
  1991年   3篇
  1990年   10篇
  1989年   7篇
  1988年   2篇
  1986年   5篇
  1985年   8篇
  1984年   8篇
  1983年   9篇
  1982年   7篇
  1981年   6篇
  1980年   5篇
  1979年   3篇
  1978年   5篇
  1977年   4篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1937年   2篇
排序方式: 共有3135条查询结果,搜索用时 31 毫秒
81.
Treatment of methyl 2-chloro-2-phenylhydrazonoacetate (1) with 1-phenylsulphonylpropyne (3) in the presence of triethylamine gives pyrazole derivatives due to cycloadditions of a nitrile imine intermediate with 3 and with its rearranged product phenylsulphonylallene (4).  相似文献   
82.
83.
84.
Abstract

The compound 4-cyano-4′-(α,α,α-trifluoromethoxy)biphenyl (1OCBF3) has been synthesized. Unlike the fully protonated analogue, 4-cyano-4′-methoxybiphenyl (1OCB), it does not show a liquid crystalline phase on cooling from the melting point (51°C) to room temperature. The transition temperature to a monotropic nematic phase was obtained as approximately 0°C by determining the transition temperatures of mixtures with 1OCB. The structures, conformational properties and orientational ordering of both 1OCB and 1OCBF3 as solutes in a nematic solvent ZLI 1132 have been investigated via the 17 dipolar couplings obtained by analysing the proton and fluorine NMR spectra of these solutions. It is concluded that the major difference between the two molecules lies in the potential, V2), governing rotation about the ring–oxygen bonds. In 1OCB the potential has the same form as in anisole, with a minimum when the C–O bond is in the plane of the attached ring (φ2 = 0°), and a maximum of about 15 kJ mol?1 when φ2 is 90°. In 1OCBF3 the barrier to rotation about the ring–O bond decreases substantially to being near zero.  相似文献   
85.
86.
We derive the equations governing the protocols minimizing the heat released by a continuous-time Markov jump process on a one-dimensional countable state space during a transition between assigned initial and final probability distributions in a finite time horizon. In particular, we identify the hypotheses on the transition rates under which the optimal control strategy and the probability distribution of the Markov jump problem obey a system of differential equations of Hamilton-Jacobi-Bellman-type. As the state-space mesh tends to zero, these equations converge to those satisfied by the diffusion process minimizing the heat released in the Langevin formulation of the same problem. We also show that in full analogy with the continuum case, heat minimization is equivalent to entropy production minimization. Thus, our results may be interpreted as a refined version of the second law of thermodynamics.  相似文献   
87.
Abstract

Time-resolved emissions of Csl:T1 are investigated. The system is laser-excited in the A-band at 308 nm and the emissions are observed in the range 370–650 nm, from 30 K to 300 K. Their analysis by means of a deconvolution permits the valuation of decay-times down to 1 ns. At every temperature many bands are observed and some of them show slow and fast components. The decay-times of the fast components are in the range 1–10 ns while the slow ones are even longer than 1 μs. In many cases intermediate decay-times of the order of 100 ns exist. The competition among the bands interests the application of this system as active material for tunable solid-state laser.  相似文献   
88.
Smart systems adapt to the surrounding environments in a number of ways. They are capable to scavenge energy from available sources, sense and elaborate external stimuli and adequately react. Electro Active Polymers are playing a main role in the realization of smart systems for applications if fields such as bio inspired and autonomous robotics, medicine, and aerospace. This paper focus on the possibility to use Ionic Polymer Metal Composites as a class of materials relevant to the realization of post silicon smart systems. The three main aspects of this new technology, i.e., fabrication methods, modeling, and applications are described with emphasis to most recent results. Attention is given to main challenges and shortcomings to be solved for technology, modelling, and control of IPMC based devices that need to be solved before this new technology can be fully exploited in real world applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013  相似文献   
89.
Carbonized polymer dots (CPDs), a peculiar type of carbon dots, show extremely high quantum yields, making them very attractive nanostructures for application in optics and biophotonics. The origin of the strong photoluminescence of CPDs resides in a complicated interplay of several radiative mechanisms. To understand the correlation between CPD processing and properties, the early stage formation of carbonized polymer dots has been studied. In the synthesis, citric acid monohydrate and 2-amino-2-(hydroxymethyl)propane-1,3-diol have been thermally degraded at 180 °C. The use of an oil bath instead of a more traditional hydrothermal reactor has allowed the CPD properties to be monitored at different reactions times. Transmission electron microscopy, time-resolved photoluminescence, nuclear magnetic resonance, infrared, and Raman spectroscopy have revealed the formation of polymeric species with amide and ester bonds. Quantum chemistry calculations have been employed to investigate the origin of CPD electronic transitions. At short reaction times, amorphous C-dots with 80 % quantum yield, have been obtained.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号