首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   370篇
  免费   9篇
  国内免费   5篇
化学   169篇
晶体学   11篇
力学   13篇
数学   29篇
物理学   162篇
  2024年   1篇
  2023年   3篇
  2022年   14篇
  2021年   9篇
  2020年   2篇
  2019年   11篇
  2018年   15篇
  2017年   14篇
  2016年   15篇
  2015年   15篇
  2014年   16篇
  2013年   38篇
  2012年   26篇
  2011年   37篇
  2010年   29篇
  2009年   28篇
  2008年   17篇
  2007年   15篇
  2006年   11篇
  2005年   6篇
  2004年   1篇
  2003年   1篇
  2002年   10篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1994年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   3篇
  1969年   2篇
  1961年   1篇
  1954年   1篇
排序方式: 共有384条查询结果,搜索用时 0 毫秒
91.
The title compound crystallizes in the orthorhombic space groupPna21, witha=15.576(2),b=19.134(3),c=5.693(1) Å andz=4. The structure was solved by direct methods, and refined to a finalR value of 0.059. This study confirms both the structure and stereochemistry of the title compound.  相似文献   
92.
The title compounds cocrystallize in space groupP¯1:a=8.773(3),b=9.14(3),c=14.062(4) Å, =81.38(7), =71.76(3), =82.96(8)°,U=1055.5 Å3,Z=4 (two independent molecules each of azauracil, its hydrolysis product, and water in the asymmetric unit). The structure was solved by direct methods and refined by full-matrix least-squares methods toR=0.059 for 2911 observed reflections. Unusually, the crystal contains both the parent molecule and its hydrolysis product in a hydrogen-bonded complex. The hydrogen bonding results in the formation of essentially planar layers of molecules which are held together by dispersion forces.  相似文献   
93.
Recent developments in the transformation of biobased 5-hydroxymethylfurfural (HMF) into a potential liquid fuel, 2,5-dimethylfuran (DMF), are summarised. This review focuses briefly on the history of HMF conversion to DMF in terms of the feedstock used and emphasises the ideal requirements in terms of the catalytic properties needed in HMF transformation into DMF. The recent state of the art and works on HMF transformation into DMF are discussed in comparison to noble metals and non-noble metals as well as bimetallic catalysts. The effect of the support used and the reaction conditions are also discussed. The recommendations for future work and challenges faced are specified.  相似文献   
94.
95.
Nanodiamonds (NDs) have garnered attention in the field of nanomedicine due to their unique properties. This review offers a comprehensive overview of NDs synthesis methods, properties, and their uses in biomedical applications. Various synthesis techniques, such as detonation, high-pressure, high-temperature, and chemical vapor deposition, offer distinct advantages in tailoring NDs′ size, shape, and surface properties. Surface modification methods further enhance NDs′ biocompatibility and enable the attachment of bioactive molecules, expanding their applicability in biological systems. NDs serve as promising nanocarriers for drug delivery, showcasing biocompatibility and the ability to encapsulate therapeutic agents for targeted delivery. Additionally, NDs demonstrate potential in cancer treatment through hyperthermic therapy and vaccine enhancement for improved immune responses. Functionalization of NDs facilitates their utilization in biosensors for sensitive biomolecule detection, aiding in precise diagnostics and rapid detection of infectious diseases. This review underscores the multifaceted role of NDs in advancing biomedical applications. By synthesizing NDs through various methods and modifying their surfaces, researchers can tailor their properties for specific biomedical needs. The ability of NDs to serve as efficient drug delivery vehicles holds promise for targeted therapy, while their applications in hyperthermic therapy and vaccine enhancement offer innovative approaches to cancer treatment and immunization. Furthermore, the integration of NDs into biosensors enhances diagnostic capabilities, enabling rapid and sensitive detection of biomolecules and infectious diseases. Overall, the diverse functionalities of NDs underscore their potential as valuable tools in nanomedicine, paving the way for advancements in healthcare and biotechnology.  相似文献   
96.
This work presents the effect of driven nickel nanoparticles (NiNPs) towards the surface of (PS-PANI)/NiNPs nanocomposite upon the application of a uniform magnetic field. The purpose is to obtain distinguishable optoelectronic and electrical properties. This process increases the surface roughness and its reactivity, and enables the tuning of the optical and electrical properties. Based on the results from X-ray photoelectron and Fourier-transform infrared spectroscopies, the magnetically-driven NiNPs to the surface are oxidized, forming NiONPs and NiOHNPs. This oxidation effect transforms the surface from a hydrophilic to a hydrophobic state. In addition, the optical bandgap energy decreases from 4.04 to 3.77 eV, and the electrical conductivity increases from 12.77 μS/cm to 57.80 μS/cm and 77.52 μS/cm, for 50 and 100 mT magnetic fields, respectively, which is attributed to the well-dispersed magnetic nanoparticles in the PS-PANI polymer matrix, resulting in a high homogeneous nanocomposite film.  相似文献   
97.
Membrane proteins are of biological and pharmaceutical significance. However, their structural study is extremely challenging mainly due to the fact that only a small number of chemical tools are suitable for stabilizing membrane proteins in solution. Detergents are widely used in membrane protein study, but conventional detergents are generally poor at stabilizing challenging membrane proteins such as G protein-coupled receptors and protein complexes. In the current study, we prepared tandem triazine-based maltosides (TZMs) with two amphiphilic triazine units connected by different diamine linkers, hydrazine (TZM−Hs) and 1,2-ethylenediamine (TZM−Es). These TZMs were consistently superior to a gold standard detergent (DDM) in terms of stabilizing a few membrane proteins. In addition, the TZM−Es containing a long linker showed more general protein stabilization efficacy with multiple membrane proteins than the TZM−Hs containing a short linker. This result indicates that introduction of the flexible1,2-ethylenediamine linker between two rigid triazine rings enables the TZM−Es to fold into favourable conformations in order to promote membrane protein stability. The novel concept of detergent foldability introduced in the current study has potential in rational detergent design and membrane protein applications.  相似文献   
98.
An extension of the transferable potentials for phase equilibria united-atom (TraPPE-UA) force field to thiol, sulfide, and disulfide functionalities and thiophene is presented. In the TraPPE-UA force field, nonbonded interactions are governed by a Lennard-Jones plus fixed point charge functional form. Partial charges are determined through a CHELPG analysis of electrostatic potential energy surfaces derived from ab initio calculations at the HF/6-31g+(d,p) level. The Lennard-Jones well depth and size parameters for four new interaction sites, S (thiols), S(sulfides), S(disulfides), and S(thiophene), were determined by fitting simulation data to pure-component vapor-equilibrium data for methanethiol, dimethyl sulfide, dimethyl disulfide, and thiophene, respectively. Configurational-bias Monte Carlo simulations in the grand canonical ensemble combined with histogram-reweighting methods were used to calculate the vapor-liquid coexistence curves for methanethiol, ethanethiol, 2-methyl-1-propanethiol, 2-methyl-2-propanethiol, 2-butanethiol, pentanethiol, octanethiol, dimethyl sulfide, diethyl sulfide, ethylmethyl sulfide, dimethyl disulfide, diethyl disulfide, and thiophene. Excellent agreement with experiment is achieved, with unsigned errors of less than 1% for saturated liquid densities and less than 3% for critical temperatures. The normal boiling points were predicted to within 1% of experiment in most cases, although for certain molecules (pentanethiol) deviations as large as 5% were found. Additional calculations were performed to determine the pressure-composition behavior of ethanethiol+n-butane at 373.15 K and the temperature-composition behavior of 1-propanethiol+n-hexane at 1.01 bar. In each case, a good reproduction of experimental vapor-liquid equilibrium separation factors is achieved; both of the coexistence curves are somewhat shifted because of overprediction of the pure-component vapor pressures.  相似文献   
99.
In this paper, we present novel developments to our recently developed method so-called “continuous sample drop flow microextraction (CSDF-ME)” technique. Previously, we showed that the CSDF-ME technique offers several advantages, including stability of extraction solvent, no need for holder device, and easy to operate. The merit of current study is to make the extraction steps faster with sample required for the analysis. The key novelty of proposed method includes usage of a solvent mixture (i.e., methanol and carbon disulfide), allowing to pump aqueous samples with a higher flow rate than the former technique which led to reduce the extraction time. Results show that the technique is cable to become faster by five times with an enrichment factor of 93 for 4.0 mL of aqueous sample. The linear range and limit of detection for Pb are found to be 0.1–6.0 and 0.03 µg L?1, respectively. The relative standard deviation for determination of 1.0 µg L?1 of Pb in a sample is 2.9% (n?=?5). Furthermore, the relative recoveries of the developed CSDF-ME method for Pb in tap water, mineral water, and Standard Reference Material for apple leaves (1515) are shown to be 98, 100, and 94%, respectively.  相似文献   
100.
An enzymatic method for the determination vitamin A (retinol) is reported using soluble and immobilized alcohol dehydrogenase, isolated from rabbit liver. The reaction is based on the oxidation of retinol and simultaneous reduction of NAD+ to NADH followed by spectrophotometric detection at 340 nm. The calibration graph was linear over the range of 2.0–10 μM with correlation coefficients of 0.9967 and 0.9992 (n = 5) for soluble and immobilized alcohol dehydrogenase respectively, with relative standard deviations (n = 3) in the range of 0.5–1.2%. The limit of detection was lower than 1.0 μM. The proposed method was applied to determine vitamin A in pharmaceuticals, and the results obtained were in reasonable agreement with the amount labeled. The results were compared using spectrophotometric reference method, and no significant difference was found between the results of the both methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号