首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1133篇
  免费   39篇
  国内免费   6篇
化学   806篇
晶体学   14篇
力学   19篇
数学   127篇
物理学   212篇
  2023年   7篇
  2022年   18篇
  2021年   10篇
  2020年   14篇
  2019年   23篇
  2018年   8篇
  2017年   16篇
  2016年   37篇
  2015年   29篇
  2014年   19篇
  2013年   46篇
  2012年   62篇
  2011年   70篇
  2010年   42篇
  2009年   36篇
  2008年   93篇
  2007年   83篇
  2006年   85篇
  2005年   62篇
  2004年   42篇
  2003年   39篇
  2002年   48篇
  2001年   32篇
  2000年   15篇
  1999年   16篇
  1998年   11篇
  1997年   12篇
  1996年   11篇
  1995年   12篇
  1994年   5篇
  1993年   8篇
  1992年   19篇
  1991年   11篇
  1990年   12篇
  1989年   14篇
  1988年   10篇
  1987年   6篇
  1986年   9篇
  1985年   15篇
  1984年   10篇
  1983年   7篇
  1982年   7篇
  1981年   5篇
  1980年   10篇
  1979年   3篇
  1978年   9篇
  1977年   3篇
  1975年   4篇
  1974年   3篇
  1930年   2篇
排序方式: 共有1178条查询结果,搜索用时 15 毫秒
991.
A scalable synthesis of 2,2-difluorohomopropargyl esters was achieved using a magnesium-promoted Barbier reaction of substituted difluoropropargyl bromides with alkyl chloroformates. These 2,2-difluorohomopropargyl esters were effective precursors in the synthesis of homopropargylic amides-by aminolysis using AlMe3, as well as of ketones-through the reaction of the corresponding Weinreb amides with Grignard reagents. Ring closing metathesis using difluorinated 1,7-enyne carbonyl compounds furnished six-membered diene products, which were used as susbstrates in a Diels-Alder reaction to afford 4,4-difluoroisoquinolin-3-ones. The [2 + 2 + 2] cycloaddition of alkynes with fluorinated 1,7-diyne amides gave 4,4-difluoro-1,4-dihydro-3(2H)-isoquinolinone derivatives regioselectively.  相似文献   
992.
It is experimentally challenging to directly obtain structural information of the transition state (TS), the high-energy bottleneck en route from reactants to products, for solution-phase reactions. Here, we use single-molecule experiments as well as high-level quantum chemical calculations to probe the TS of disulfide bond reduction, a bimolecular nucleophilic substitution (S N2) reaction. We use an atomic force microscope in force-clamp mode to apply mechanical forces to a protein disulfide bond and obtain force-dependent rate constants of the disulfide bond reduction initiated by a variety of nucleophiles. We measure distances to the TS or bond elongation (Delta x), along a 1-D reaction coordinate imposed by mechanical force, of 0.31 +/- 0.05 and 0.44 +/- 0.03 A for thiol-initiated and phosphine-initiated disulfide bond reductions, respectively. These results are in agreement with quantum chemical calculations, which show that the disulfide bond at the TS is longer in phosphine-initiated reduction than in thiol-initiated reduction. We also investigate the effect of solvent environment on the TS geometry by incorporating glycerol into the aqueous solution. In this case, the Delta x value for the phosphine-initiated reduction is decreased to 0.28 +/- 0.04 A whereas it remains unchanged for thiol-initiated reduction, providing a direct test of theoretical calculations of the role of solvent molecules in the reduction TS of an S N2 reaction. These results demonstrate that single-molecule force spectroscopy represents a novel experimental tool to study mechanochemistry and directly probe the sub-?ngstr?m changes in TS structure of solution-phase reactions. Furthermore, this single-molecule method opens new doors to gain molecular level understanding of chemical reactivity when combined with quantum chemical calculations.  相似文献   
993.
We present the crystal structure of the DNA duplex formed by d(ATATATCT). The crystals contain seven stacked antiparallel duplexes in the asymmetric unit with A.T Hoogsteen base pairs. The terminal CT sequences bend over so that the thymines enter the minor groove and form a hydrogen bond with thymine 2 of the complementary strand in the Hoogsteen duplex. Cytosines occupy extra-helical positions; they contribute to the crystal lattice through various kinds of interactions, including a unique CAA triplet. The presence of thymine in the minor groove apparently contributes to the stability of the DNA duplex in the Hoogsteen conformation. These observations open the way toward finding under what conditions the Hoogsteen duplex may be stabilized in vivo. The present crystal structure also confirms the tendency of A.T-rich oligonucleotides to crystallize as long helical stacks of duplexes.  相似文献   
994.
This review covers recent advances in the development of new designs of electrochemical sensors and biosensors that make use of electrode surfaces modification with carbon nanotubes. Applications based on carbon nanotubes-driven electrocatalytic effects, and the construction and analytical usefulness of new hybrid materials with polymers or other nanomaterials will be treated. Moreover, electrochemical detection using carbon nanotubes-modified electrodes as detecting systems in separation techniques such as high performance liquid chromatography (HPLC) or capillary electrophoresis (CE) will be also considered. Finally, the preparation of electrochemical biosensors, including enzyme electrodes, immunosensors and DNA biosensors, in which carbon nanotubes play a significant role in their sensing performance will be separately considered.  相似文献   
995.
The 2‐amino‐2‐deoxy‐α‐D ‐glucopyranosyl moiety (ring I) of paromomycin was replaced by a 2,4‐diamino‐2,4‐dideoxy‐α‐D ‐glucopyranosyl, 2,4‐diamino‐2,4‐dideoxy‐α‐D ‐galactopyranosyl, 2‐amino‐2‐deoxy‐α‐D ‐galactopyranosyl, or 3,4,5‐trideoxy‐4‐aza‐α‐D ‐erythro‐heptoseptanosyl moiety to investigate the effect of the substituent at C(4′) on the interaction with ribosomal RNA. The triflate 6 was prepared from the key intermediate pentaazido 3′,6′‐dibenzyl ether 5 , and the hexosulose 10 was obtained by oxidation of 5 with DessMartin's periodinane. Stereoselective reduction of 10 with NaBH4 gave the alcohol 11 that was transformed into the triflate 12 . The epimeric hexaazides 7 and 13 were obtained by treating the triflates 6 and 12 , respectively, with tetrabutylammonium azide. Periodate cleavage of glycol 2 yielded the dialdehyde 24 that was reductively aminated with aniline and benzylamine to give the 3,4,5‐trideoxy‐4‐aza‐α‐D ‐erythro‐heptoseptanosides 25 and 26 , respectively. Standard azide reduction and debenzylation yielded 9 (2,4‐diamino‐2,4‐dideoxy‐α‐D ‐galactopyranosyl ring I), 13 (2‐amino‐2‐deoxy‐α‐D ‐galactopyranosyl ring I), 17 (2,4‐diamino‐2,4‐dideoxy‐α‐D ‐glucopyranosyl ring I), and 27 and 28 (3,4,5‐trideoxy‐4‐aza‐α‐D ‐erythro‐heptoseptanosyl ring I). The derivatives 9 and 13 possessing a D ‐galacto‐configured ring I were less active than the corresponding D ‐gluco‐analogues 17 and paromomycin ( 1 ), respectively. The C(4′)‐aminodeoxy derivative 17 (D ‐gluco ring I) and the known 4′‐deoxyparomomycin ( 23 ), prepared by a new route, displayed slightly lower antibacterial activities than paromomycin ( 1 ). Cell‐wall permeability is not responsible for the unexpectedly low activity for 17 , as shown by cell‐free translation assays. The results evidence that the orientation of the substituent at C(4′) is more important than its nature for drug binding and activity.  相似文献   
996.
A new process design and operation for the extraction of essential oils was developed. Microwave hydrodiffusion and gravity (MHG) is a combination of microwaves for hydrodiffusion of essential oils from the inside to the exterior of biological material and earth gravity to collect and separate. MHG is performed at atmospheric pressure without adding any solvent or water. MHG has been compared with a conventional technique, hydrodistillation (HD), for the extraction of essential oil from two aromatic herbs: spearmint (Mentha spicata L.) and pennyroyal (Mentha pulegium L.) belonging to the Labiatae family. The essential oils extracted by MHG for 15 min were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained by conventional hydrodistillation for 90 min. MHG also prevents pollution through potential 90% of energy saved which can lead to greenhouse gas emission benefits.  相似文献   
997.
Using a combination of NMR methods we have detected and studied fluxional motions in the slip-sandwich structure of solid decamethylzincocene (I, [(eta5-C5Me5)Zn(eta1-C5Me5)]). For comparison, we have also studied the solid iminoacyl derivative [(eta5-C5Me5)Zn(eta1-C(NXyl)C5Me5)] (II). The variable temperature 13C CPMAS NMR spectra of I indicate fast rotations of both Cp* rings in the molecule down to 156 K as well as the presence of an order-disorder phase transition around 210 K. The disorder is shown to be dynamic arising from a fast combined Zn tautomerism and eta1/eta5 reorganization of the Cp* rings between two degenerate states A and B related by a molecular inversion. In the ordered phase, the degeneracy of A and B is lifted; that is, the two rings X and Y are inequivalent, where X exhibits a larger fraction of time in the eta5 state than Y. However, the interconversion is still fast and characterized by a reaction enthalpy of DeltaH = 2.4 kJ mol-1 and a reaction entropy of DeltaS = 4.9 J K-1 mol-1. In order to obtain quantitative kinetic information, variable temperature 2H NMR experiments were performed on static samples of I-d6 and II-d6 between 300 and 100 K, where in each ring one CH3 is replaced by one CD3 group. For II-d6, the 2H NMR line shapes indicate fast CD3 group rotations and a fast "eta5 rotation", corresponding to 72 degrees rotational jumps of the eta5 coordinated Cp* ring. The latter motion becomes slow around 130 K. By line shape analysis, an activation energy of the eta5 rotation of about 21 kJ mol-1 was obtained. 2H NMR line shapes analysis of I-d6 indicates fast CD3 group rotations at all temperatures. Moreover, between 100 and 150 K, a transition from the slow to the fast exchange regime is observed for the 5-fold rotational jumps of both Cp* rings, exhibiting an activation energy of 18 kJ mol-1. This value was corroborated by 2H NMR relaxometry from which additionally the activation energies 6.3 kJ mol-1 and 11.2 kJ mol-1 for the CD3 rotation and the molecular inversion process were determined.  相似文献   
998.
Magic-angle spinning pulsed field gradient nuclear magnetic resonance (MAS PFG NMR) was applied for selective self-diffusion measurements of acetone-n-alkane (C(6) up to C(9)) mixtures in nanoporous silica gel. Two specimens of silica gel with mean pore sizes of about 4 and 10 nm are considered. In the smaller pores, the n-alkane diffusivities are by about one and the acetone diffusivities by about two orders of magnitude smaller than in the larger pores. In addition, the acetone diffusivities in the narrow-pore specimen exhibit a pronounced oscillation with increasing chain length of the solvent n-alkanes: the diffusivities of acetone dissolved in odd-carbon number n-alkanes exceed those of acetone dissolved in even-carbon number n-alkanes by about 50%! These findings reproduce the tendencies observed in previous macroscopic release studies (Phys. Chem. Chem. Phys. 2003, 5, 2476) and suggest the formation of acetone-n-alkane complex-like assemblages in the narrow-pore silica gel.  相似文献   
999.
The glycosylation of natural product scaffolds with highly modified deoxysugars is often essential for their biological activity, being responsible for specific contacts to molecular targets and significantly affecting their pharmacokinetic properties. In order to provide tools for the targeted alteration of natural product glycosylation patterns, significant strides have been made to understand the biosynthesis of activated deoxysugars and their transfer. We report here efforts towards the production of plasmid-borne biosynthetic gene cassettes capable of producing TDP-activated forms of D-mycaminose, D-angolosamine and D-desosamine. We additionally describe the transfer of these deoxysugars to macrolide aglycones using the glycosyl transferases EryCIII, TylMII and AngMII, which display usefully broad substrate tolerance.  相似文献   
1000.
This paper reports use of a combination of Fourier-transform infrared (FTIR) spectroscopic imaging and desorption electrospray ionization linear ion-trap mass spectrometry (DESI MS) for characterization of counterfeit pharmaceutical tablets. The counterfeit artesunate antimalarial tablets were analyzed by both techniques. The results obtained revealed the ability of FTIR imaging in non-destructive micro-attenuated total reflection (ATR) mode to detect the distribution of all components in the tablet, the identities of which were confirmed by DESI MS. Chemical images of the tablets were obtained with high spatial resolution. The FTIR spectroscopic imaging method affords inherent chemical specificity with rapid acquisition of data. DESI MS enables high-sensitivity detection of trace organic compounds. Combination of these two orthogonal surface-characterization methods has great potential for detection and analysis of counterfeit tablets in the open air and without sample preparation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号