首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   947篇
  免费   28篇
化学   684篇
晶体学   3篇
力学   21篇
数学   89篇
物理学   178篇
  2023年   16篇
  2022年   36篇
  2021年   46篇
  2020年   26篇
  2019年   32篇
  2018年   18篇
  2017年   26篇
  2016年   37篇
  2015年   40篇
  2014年   44篇
  2013年   60篇
  2012年   68篇
  2011年   62篇
  2010年   42篇
  2009年   52篇
  2008年   71篇
  2007年   57篇
  2006年   44篇
  2005年   33篇
  2004年   28篇
  2003年   20篇
  2002年   24篇
  2001年   11篇
  2000年   9篇
  1999年   3篇
  1998年   5篇
  1997年   5篇
  1996年   7篇
  1995年   3篇
  1994年   5篇
  1993年   6篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1988年   5篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1976年   2篇
排序方式: 共有975条查询结果,搜索用时 15 毫秒
91.
This contribution reports the synthesis of the novel tetradentate bisguanidine ligand 2′,2′‐[ethane‐1, 2‐diylbis(methylazanediyl)]bis(ethane‐2, 1‐diyl)bis(1, 1, 3, 3‐tetramethylguanidine) ( L1 , TMG2dmtrien), which combines two weak amine and two strong guanidine donor functions. Two new copper(II) complexes were isolated and structurally characterized as complexes [Cu(TMG2dmtrien)][Br]2 · 3MeCN ( C1 [Br]2 · 3MeCN) and [Cu(TMG2dmtrien)][Cl]2 · 3MeCN ( C2 [Cl]2 · 3MeCN). The cations C1 and C2 [Cu(TMG2dmtrien)]2+ show a square‐planar coordination environment and are chiral with both enantiomers being observed in the unit cell. We investigated the application of L1 in copper‐mediated styrene ATRP. L1 shows with CuBr and PEBr as initiator a high polymerization activity according to the polymerization rate. First order kinetics confirm the living character of the polymerization. However, the deviation of molecular weights from theoretical molecular weights and the broad molecular weight distributions hint for a low controlled ATRP. The ATRP with further copper(I) salts {CuCl, [Cu(MeCN)4]BF4 and [Cu(MeCN)4]PF6} and PECl and PEBr as initiators were investigated as well. Herein the use of [Cu(MeCN)4]PF6 with PECl led to promising results.  相似文献   
92.
This paper describes the development of a new sensor based on an ionic organic film. The amphiphilic molecule, 4‐[(4‐decyloxyphenyl)‐ethynyl]‐1‐methylpyridinium iodide (10PyI), which has liquid‐crystalline properties, was synthesized and applied in the construction of a GCE/10PyI sensor. Analytical parameters for caffeic acid, repeatability (4.8 %), reproducibility (2.8 %), linearity (two ranges: 9.9×10?7 to 3.8×10?5 mol L?1 and 4.7×10?5 to 9.9×10?5 mol L?1) and detection limits (9.0×10?7 mol L?1 and 8.7×10?6 mol L?1), were determined. The method was successfully applied in the determination of total phenolic compounds (TPC) in mate herb extracts.  相似文献   
93.
An electrochemical sensor was developed and tested for detection of L-tyrosine in the presence of epinephrine by surface modification of a glassy carbon electrode (GCE) with Nafion and cerium dioxide nanoparticles. Fabrication parameters of a surfactant-assisted precipitation method were optimized to produce 2–3 nm CeO2 nanoparticles with very high surface-to-volume ratio. The resulting nanocrystals were characterized structurally and morphologically by X-ray diffractometery (XRD), scanning and high resolution transmission electron microscopy (SEM and HR-TEM). The nanopowder is sonochemically dispersed in a Nafion solution which is then used to modify the surface of a GCE electrode. The electrochemical activity of L-tyrosine and epinephrine was investigated using both a Nafion-CeO2 coated and a bare GCE. The modified electrode exhibits a significant electrochemical oxidation effect of L-tyrosine in a 0.2 M Britton-Robinson (B-R) buffer solution of pH 2. The electro-oxidation peak current increases linearly with the L-tyrosine concentration in the molar concentration range of 2 to 160 μM. By employing differential pulse voltammetry (DPV) for simultaneous measurements, we detected two reproducible peaks for L-tyrosine and epinephrine in the same solution with a peak separation of about 443 mV. The detection limit of the sensor (signal to noise ratio of 3) for L-tyrosine is ~90 nM and the sensitivity is 0.20 μA μM?1, while for epinephrine these values are ~60 nM and 0.19 μA μM?1. The sensor exhibited excellent selectivity, sensitivity, reproducibility and stability as well as a very good recovery time in real human blood serum samples.
Simultaneous electrochemical determination of L-tyrosine and epinephrine in blood plasma with Nafion-CeO2/GCE modified electrode showing a 443 mV peak-to-peak potential difference between species oxidation peak currents.  相似文献   
94.
Vicinal diketones, namely diacetyl (DC) and pentanedione (PN), are compounds naturally found in beer that play a key role in the definition of its aroma. In lager beer, they are responsible for off-flavors (buttery flavor) and therefore their presence and quantification is of paramount importance to beer producers. Aiming at developing an accurate quantitative monitoring scheme to follow these off-flavor compounds during beer production and in the final product, the head space solid-phase microextraction (HS-SPME) analytical procedure was tuned through experiments planned in an optimal way and the final settings were fully validated. Optimal design of experiments (O-DOE) is a computational, statistically-oriented approach for designing experiences that are most informative according to a well-defined criterion. This methodology was applied for HS-SPME optimization, leading to the following optimal extraction conditions for the quantification of VDK: use a CAR/PDMS fiber, 5 ml of samples in 20 ml vial, 5 min of pre-incubation time followed by 25 min of extraction at 30 °C, with agitation. The validation of the final analytical methodology was performed using a matrix-matched calibration, in order to minimize matrix effects. The following key features were obtained: linearity (R2 > 0.999, both for diacetyl and 2,3-pentanedione), high sensitivity (LOD of 0.92 μg L−1 and 2.80 μg L−1, and LOQ of 3.30 μg L−1 and 10.01 μg L−1, for diacetyl and 2,3-pentanedione, respectively), recoveries of approximately 100% and suitable precision (repeatability and reproducibility lower than 3% and 7.5%, respectively). The applicability of the methodology was fully confirmed through an independent analysis of several beer samples, with analyte concentrations ranging from 4 to 200 g L−1.  相似文献   
95.
The spectroscopic properties and liquid structure of pure tri-n-butyl phosphate (TBP) and FeCl3/TBP solutions have been investigated by Uv–Vis and Raman spectroscopies, X-ray diffraction and conductometry. Uv–Vis and Raman spectra, supported by conductometric measurements, consistently indicate that the solubilized salt is present mostly as TBP n [FeCl3???n ] n+ and FeCl4 ? complex ions due to specific interaction with the TBP phosphate group. Thanks to this interaction, a high amount of salt (up to 13 % w/w) can be dissolved despite the relatively low dielectric constant of TBP. The X-ray diffractogram of pure TBP has been interpreted in terms of three main contributions which can be attributed to spatial pair correlations between atoms of interacting TBP molecules. In the presence of increasing FeCl3 amounts, it has been observed a progressive structuring effect, exerted by the dissolved salt, on the layers of opportunely oriented TBP molecules due to the formation of the complex ionic species. By simple treatment with NaBH4, the synthesis of Fe nanoparticles has been achieved. The absence of water, the easiness of preparation, the high amount of salt which can be suspended and the peculiar physico-chemical properties of such systems are all elements worth of note for the fields of nanoparticle synthesis and for specialized technological applications.  相似文献   
96.
97.
A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid–liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett–Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L?1 and 9 μg L?1, respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L?1), and coefficients of variation of 7 % and 5 % (n?=?5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.
Figure
?  相似文献   
98.
An integrated platform was developed for point-of-use determination of ethanol in sugar cane fermentation broths. Such analysis is important because ethanol reduces its fuel production efficiency by altering the alcoholic fermentation step when in excess. The custom-designed platform integrates gas diffusion separation with voltammetric detection in a single analysis module. The detector relied on a Ni(OH)2-modified electrode. It was stabilized by uniformly depositing cobalt and cadmium hydroxides as shown by XPS measurements. Such tests were in accordance with the hypothesis related to stabilization of the Ni(OH)2 structure by insertion of Co2+ and Cd2+ ions in this structure. The separation step, in turn, was based on a hydrophobic PTFE membrane, which separates the sample from receptor solution (electrolyte) where the electrodes were placed. Parameters of limit of detection and analytical sensitivity were estimated to be 0.2% v/v and 2.90 μA % (v/v)−1, respectively. Samples of fermentation broth were analyzed by both standard addition method and direct interpolation in saline medium based-analytical curve. In this case, the saline solution exhibited ionic strength similar to those of the samples intended to surpass the tonometry colligative effect of the samples over analyte concentration data by attributing the reduction in quantity of diffused ethanol vapor majorly to the electrolyte. The approach of analytical curve provided rapid, simple and accurate analysis, thus contributing for deployment of point-of-use technologies. All of the results were accurate with respect to those obtained by FTIR method at 95% confidence level.  相似文献   
99.
A novel natural product indole, alkaloid, named rel‐pyricolluminol ( 1 ), was isolated from Aspidosperma pyricollum Müll .Arg . together with six known metabolites sitsirikine ( 2 ), aparicin ( 3 ), ulein ( 4 ), stemmadenine ( 5 ), lupeol ( 6 ), and (3β)‐sitoster‐3‐yl β‐D ‐glucopyranoside ( 7 ). These compounds were characterized on the basis of their spectral data, mainly 1D‐ (1H,13C‐DEPTQ) and 2D‐NMR (1H,1H‐COSY, NOESY, HSQC, and HMBC), and mass spectra (EI‐MS and HR‐ES‐MS), involving also comparison with data from the literature.  相似文献   
100.
A rapid, sensitive, and specific method was developed and validated using a nonaqueous‐capillary electrophoresis method with TOF‐MS for determination of sunitinib and N‐desethyl sunitinib in human urine. In order to avoid ionic suppression a urine samples dilution with methanol 1:10 previous step was used. This was the only treatment step to urine samples before the injection. Despite this dilution of the urine, the detection limit was as low as 0.07 mg/L for sunitinib and 0.15 mg/L for N‐desethyl sunitinib. Separation of compounds was achieved with a mixture of 5 mM ammonium formate in methanol. The calibration curves were linear over the range of 0.5–50.0 mg/L for the two analyzed compounds. The within‐run and between‐run precisions were within 5%, while the accuracy ranged from 96.0 to 100.4%. This method can be used in routine clinical practice to monitor sunitinib and N‐desethyl sunitinib drugs in the urine of cancer patients treated with once daily administration.  相似文献   
[首页] « 上一页 [5] [6] [7] [8] [9] 10 [11] [12] [13] [14] [15] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号