首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   0篇
  国内免费   2篇
化学   31篇
数学   4篇
物理学   24篇
  2022年   3篇
  2021年   2篇
  2020年   7篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2005年   2篇
  2004年   6篇
  2003年   2篇
  2000年   2篇
  1998年   1篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1989年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
31.
32.
Sr3In0.9Co1.1O6, isostructural to Ca3Co2O6, is revealed by the study of the phase relations in the system SrO-InO1.5-CoOx (1000 °C). The structure of Sr3In0.9Co1.1O6 is refined by the combination of powder X-ray and neutron diffraction. Sr3In0.9Co1.1O6 crystallizes in a trigonal lattice with the cell parameters a=b=9.59438(3) Å, c=11.02172(4) Å with the space group R-3c. Its structure possesses 1D (In/Co)O3 chains running along the c-axis constructed by alternating face-sharing CoO6 octahedra and (In0.9Co0.1)O6 trigonal prisms. The co-occupation of In3+ and Co3+ at the trigonal prismatic site is evidenced by elementary analysis and determined by the structure refinement. Sr3In0.9Co1.1O6 is paramagnetic, and the susceptibility is consistent with the occupation of Co3+ at 10% of the trigonal prismatic positions in a high spin state (HS, S=2). The HS Co3+ is well separated by diamagnetic CoO6 octahedra and InO6 trigonal prisms and shows a g factor of 2.0 in the magnetic measurements.  相似文献   
33.
We report here measurements of phonon spectrum and lattice dynamical calculations for GaPO4. The measurements in low-cristobalite phase of GaPO4 are carried out using high-resolution medium-energy chopper spectrometer at ANL, USA in the energy transfer range 0–160 meV. Semiempirical interatomic potential in GaPO4, previously determined using ab-initio calculations have been widely used in studying the phase transitions among various polymorphs. The calculated phonon spectrum using the available potential show fair agreement with the experimental data. However, the agreement between the two is improved by including the polarisability of the oxygen atoms in the framework of the shell model. The lattice dynamical models are also exploited for calculations of various thermodynamic properties of GaPO4.  相似文献   
34.
The present work studied the effect of different carbon dioxide (CO2) adsorbents on Ni-based dual-function materials (DFMs) for the development of carbon capture and on-site utilization in a reactor at isothermal condition. The DFMs containing Ni functioning as a methanation catalyst with various CO2 adsorbents (i.e., CaO, MgO, K2CO3, or Na2CO3) were prepared on γ-Al2O3 through sequential impregnation. The result indicated that Ni-Na2CO3/γ-Al2O3 had the highest methanation capacity (i.e., 0.1783 mmol/g) and efficiency (i.e., 71.09%) in the CO2 adsorption–methanation test. The CO2 uptake and the subsequent methanation capacity of the Ni-Na2CO3/γ-Al2O3 increased to more than 24 times and more than 17 times, respectively, compared to Ni/γ-Al2O3. The high methanation capacity was correlated to its highest amount of weak basic sites, substantial CO2 capture capacity and capture/release efficiency, and reactivity to H2 at a lower temperature, supported by CO2-TPD, TGA analyses for adsorption or adsorption–desorption at the isothermal condition, and H2-TPRea, respectively. A continuous cyclic CO2 adsorption–methanation was performed by using the Ni-Na2CO3/γ-Al2O3 and Ni-CaO/γ-Al2O3, showing that the CO2 adsorption capacity was stabilized from third cycle onward, whereas the methanation capacity was stabilized at all cycles, indicating the high stability of the DFMs for both CO2 adsorption and subsequent methanation. This work demonstrated successful synthesis of the Ni-based, low-cost, and stable DFMs with the ability to produce methane via the direct capture of CO2.  相似文献   
35.
Pathogen infections and cancer are two major human health problems. Herein, we report the synthesis of an organic salt photosensitizer (PS), called 4TPA‐BQ, by a one‐step reaction. 4TPA‐BQ presents aggregation‐induced emission features. Owing to the aggregation‐induced reactive oxygen species generated and a sufficiently small ΔEST, 4TPA‐BQ shows a satisfactorily high 1O2 generation efficiency of 97.8 %. In vitro and in vivo experiments confirmed that 4TPA‐BQ exhibited potent photodynamic antibacterial performance against ampicillin‐resistant Escherichia coli with good biocompatibility in a short time (15 minutes). When the incubation duration persisted long enough (12 hours), cancer cells were ablated efficiently, leaving normal cells essentially unaffected. This is the first reported time‐dependent fluorescence‐guided photodynamic therapy in one individual PS, which achieves ordered and multiple targeting simply by varying the external conditions. 4TPA‐BQ reveals new design principles for the implementation of efficient PSs in clinical applications.  相似文献   
36.
Recently, microbial-based iron reduction has been considered as a viable alternative to typical chemical-based treatments. The iron reduction is an important process in kaolin refining, where iron-bearing impurities in kaolin clay affects the whiteness, refractory properties, and its commercial value. In recent years, Gram-negative bacteria has been in the center stage of iron reduction research, whereas little is known about the potential use of Gram-positive bacteria to refine kaolin clay. In this study, we investigated the ferric reducing capabilities of five microbes by manipulating the microbial growth conditions. Out of the five, we discovered that Bacillus cereus and Staphylococcus aureus outperformed the other microbes under nitrogen-rich media. Through the biochemical changes and the microbial behavior, we mapped the hypothetical pathway leading to the iron reduction cellular properties, and found that the iron reduction properties of these Gram-positive bacteria rely heavily on the media composition. The media composition results in increased basification of the media that is a prerequisite for the cellular reduction of ferric ions. Further, these changes impact the formation of biofilm, suggesting that the cellular interaction for the iron(III)oxide reduction is not solely reliant on the formation of biofilms. This article reveals the potential development of Gram-positive microbes in facilitating the microbial-based removal of metal contaminants from clays or ores. Further studies to elucidate the corresponding pathways would be crucial for the further development of the field.  相似文献   
37.
Two-layered aluminium nitride (AlN)/silicon nitride microbridges were fabricated for microbridge tests to evaluate the elastic modulus, residual stress and tensile strength of the AlN films. The silicon nitride layer was added to increase the robustness of the structure. In a microbridge test, load was applied to the centre of a microbridge and was gradually increased by a nano-indenter equipped with a wedge tip until the sample was broken, while displacement was recorded coherently. Measurements were performed on single-layered silicon nitride microbridges and two-layered AlN/silicon nitride microbridges respectively. The data were fitted to a theory to derive the elastic modulus, residual stress and tensile strength of the silicon nitride films and AlN films. For the AlN films, the three parameters were determined to be 200, 0.06 and 0.3?GPa, respectively. The values of elastic modulus obtained were consistent with those measured by conventional nano-indentation method. The tensile strength value can be used as a reference to reflect the maximum tolerable tensile stress of AlN films when they are used in micro-electromechanical devices.  相似文献   
38.
The effects of oxygen doping on the hole-carrying CuO2-layers in Tl2(Ba1−xSrx)2Ca2Cu3Oy were studied by combined chemical and valence analysis, Tc measurements and neutron diffraction. The highest Tc is characterized by an optimal excess oxygen content, Δy, dichotomizing the under- and over-doped regions for each Sr concentration. While the average Tl valence is close to 3.0 and independent of Δy, the average Cu valence shows a linear dependence with Δy. An increase of the flatness of the CuO2 plane, characterized by the O(2)-Cu(2)-O(2) bond angle of ∼176°, was observed at the optimal Δy.  相似文献   
39.
Poly(ethylene oxide) (PEO) is known for facilitating the electrospinning of biopolymer solutions, which are otherwise not electrospinnable. The objective of this study was to improve the understanding of the positive effects of PEO on the electrospinning of whey protein isolate (WPI) solutions under different pH conditions. Alterations in protein secondary structure and polymer solution properties (viscosity, conductivity, and dynamic surface tension), as induced by pH changes, significantly affected the electrospinning behavior of WPI/PEO (10% w/w: 0.4% w/w PEO) solutions. Acidic solutions resulted in smooth fibers (707 ± 105 nm) while neutral solutions produced spheres (2.0 ± 1.0 μm) linked with ultrafine fibers (138 ± 32 nm). In comparison, alkaline solutions produced fibers (191 ± 36 nm) that were embedded with spindle‐like beads (1.0 ± 0.5 μm). 13C NMR and FTIR spectroscopies showed that the increase in random coil and α‐helix secondary structures in WPI were the main contributors to the formation of bead‐less electrospun fibers. The electrospinning‐enabling properties of PEO on aqueous WPI solutions were attributed to physical chain entanglement between the two polymers, rather than specific polymer–polymer interactions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
40.
Polarized Raman spectroscopy was used to investigate the room‐temperature phonon characteristics of a series of rare‐earth arsenate (REAsO4, RE = Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, and Lu) single crystals. The Raman data were interpreted in a systematic manner based on the known tetragonal zircon structure of these compounds, and assignments and correlations were made for the observed bands. We found that the wavenumbers of the internal modes of the AsO4 tetrahedron increased with increasing atomic number. This increase seems to be correlated to the contraction of the RE–O bond length. For three out of four lattice wavenumbers observed, this tendency was not nearly so marked as in the case of the internal mode wavenumber. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号