首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
化学   6篇
物理学   19篇
  2008年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2000年   4篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
11.
12.
13.
14.
In this paper we consider surfactant solutions near a pair of interfaces. It is well-known that strong lateral interactions between surfactant molecules give rise to a step in the adsorption isotherm. In a self-consistent field theory, such a step in the adsorbed amount shows up as a van der Waals loop. The consequence of such a loop for surface force experiments is analyzed. From adsorption isotherms at fixed confinement we extract the relevant adsorbed amounts for a fixed chemical potential as a function of the confinement. A cusped structure is found for the relation between the interaction energy and the slit width: there is a confinement-induced first-order phase transition. The corresponding interaction curve has a kink at the binodal slit distance. Metastable branches as well as an unstable branch (bracketed by the two spinodal points) are presented. The metastability is expected to give rise to force hysteresis in, e.g., atomic force microscope or surface force apparatus experiments, distinctly different from those due to mechanical instabilities of the cantilever system.  相似文献   
15.
Plasma protein-mediated attractive interaction between membranes of red blood cells (RBCs) and phospholipid vesicles was studied. It is shown that beta(2)-glycoprotein I (beta(2)-GPI) may induce RBC discocyte-echinocyte-spherocyte shape transformation and subsequent agglutination of RBCs. Based on the observed beta(2)-GPI-induced RBC cell shape transformation it is proposed that the hydrophobic portion of beta(2)-GPI molecule protrudes into the outer lipid layer of the RBC membrane and increases the area of this layer. It is also suggested that the observed agglutination of RBCs is at least partially driven by an attractive force which is of electrostatic origin and depends on the specific molecular shape and internal charge distribution of membrane-bound beta(2)-GPI molecules. The suggested beta(2)-GPI-induced attractive electrostatic interaction between like-charged RBC membrane surfaces is qualitatively explained by using a simple mathematical model within the functional density theory of the electric double layer, where the electrostatic attraction between the positively charged part of the first domains of bound beta(2)-GPI molecules and negatively charged glycocalyx of the adjacent RBC membrane is taken into account.  相似文献   
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号