首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   5篇
  国内免费   2篇
化学   132篇
晶体学   2篇
力学   2篇
数学   30篇
物理学   91篇
  2023年   3篇
  2022年   5篇
  2021年   2篇
  2020年   5篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   2篇
  2014年   3篇
  2013年   12篇
  2012年   10篇
  2011年   16篇
  2010年   7篇
  2009年   6篇
  2008年   15篇
  2007年   12篇
  2006年   9篇
  2005年   10篇
  2004年   7篇
  2003年   5篇
  2002年   2篇
  2001年   4篇
  2000年   14篇
  1999年   5篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1974年   5篇
  1973年   3篇
  1972年   2篇
  1966年   1篇
排序方式: 共有257条查询结果,搜索用时 15 毫秒
31.
FUB-AMB, an indazole carboxamide synthetic cannabinoid recreational drug, was one of the compounds most frequently reported to governmental agencies worldwide between 2016 and 2019. It has been implicated in intoxications and fatalities, posing a risk to public health. In the current study, FUB-AMB was incubated with human liver microsomes (HLM) to assess its metabolic fate and stability and to determine if its major ester hydrolysis metabolite (M1) was present in 12 authentic forensic human blood samples from driving under the influence of drug cases and postmortem investigations using UHPLC–MS/MS. FUB-AMB was rapidly metabolized in HLM, generating M1 that was stable through a 120-min incubation period, a finding that indicates a potential long detection window in human biological samples. M1 was identified in all blood samples, and no parent drug was detected. The authors propose that M1 is a reliable marker for inclusion in laboratory blood screens for FUB-AMB; this metabolite may be pharmacologically active like its precursor FUB-AMB. M1 frequently appears in samples in which the parent drug is undetectable and can point to the causative agent. The results suggest that it is imperative that synthetic cannabinoid laboratory assay panels include metabolites, especially known or potential pharmacologically active metabolites, particularly for compounds with short half-lives.  相似文献   
32.
Proteins are important in bacterial adhesion, but interactions at molecular-scales between proteins and specific functional groups are not well understood. The adhesion forces between four proteins [bovine serum albumin (BSA), protein A, lysozyme, and poly-d-lysine] and COOH, NH2 and OH-functionalized (latex) colloids were examined using colloid probe atomic force microscopy (AFM) as the function of colloid residence time (T) and solution ionic strength (IS). For three of the proteins, OH-functionalized colloids produced higher adhesion forces to proteins (2.6-30.5 nN; IS=1 mM, T=10s) than COOH- and NH2-functionalized colloids (1.6-6.8 nN). However, protein A produced the largest adhesion force (8.1+/-1.0 nN, T=10 s) with the COOH-functionalized colloid, demonstrating the importance of specific and unanticipated protein-functional group interactions. The NH2-functionalized colloid typically produced the lowest adhesion forces with all proteins, likely due to repulsive electrostatic forces and weak bonds for NH2-NH2 interactions. The adhesion force (F) between functionalized colloids and proteins consistently increased with residence time (T), and data was well fitted by F=ATn. The constant value of n=0.21+/-0.07 for all combinations of proteins and functionalized colloids indicated that water exclusion and protein rearrangement were the primary factors affecting adhesion over time. Adhesion forces decreased inversely with IS for all functional groups interacting with surface proteins, consistent with previous findings. These results demonstrate the importance of specific molecular-scale interactions between functional groups and proteins that will help us to better understand factors colloidal adhesion to surfaces.  相似文献   
33.
Luecha J  Hsiao A  Brodsky S  Liu GL  Kokini JL 《Lab on a chip》2011,11(20):3419-3425
An alternative green microfluidic device made of zein, a prolamin of corn, can be utilized as a disposable environmentally friendly microchip especially in agriculture applications. Using standard soft lithography and stereo lithography techniques, we fabricated thin zein films with microfluidic chambers and channels. These were bonded to both a glass slide and another zein film. The zein film with microfluidic features bonds irreversibly with other surfaces by vapor-deposition of ethanol to create an adhesive layer resulting in very little or no trapped air and small shape distortion. Zein-zein and zein-glass microfluidic devices demonstrated sufficient strength to facilitate fluid flow in a complex microfluidic design that showed no leakage under high hydraulic pressure. Zein-glass microfluidic devices with serpentine mixing design showed successful fluid manipulation as a concentration gradient of Rhodamine B solution was generated. The ease of fabrication and bonding and the flexibility and moldability of zein offer attractive possibilities for microfluidic device design and manufacturing. These devices can include several unit operations with mixing being one of the most commonly used. The zein-based microfluidic devices, made entirely from a biopolymer from agricultural origin, offer alternative environmentally friendly material choices that are less dependent on limited petroleum based polymer resources.  相似文献   
34.
Thirty-three bituminous coal samples were utilized to test the application of laser-induced breakdown spectroscopy technique for coal elemental concentration measurement in the air. The heterogeneity of the samples and the pyrolysis or combustion of coal during the laser–sample interaction processes were analyzed to be the main reason for large fluctuation of detected spectra and low calibration quality. Compared with the generally applied normalization with the whole spectral area, normalization with segmental spectral area was found to largely improve the measurement precision and accuracy. The concentrations of major element C in coal were determined by a novel partial least squares (PLS) model based on dominant factor. Dominant C concentration information was taken from the carbon characteristic line intensity since it contains the most-related information, even if not accurately. This dominant factor model was further improved by inducting non-linear relation by partially modeling the inter-element interference effect. The residuals were further corrected by PLS with the full spectrum information. With the physical-principle-based dominant factor to calculate the main quantitative information and to partially explicitly include the non-linear relation, the proposed PLS model avoids the overuse of unrelated noise to some extent and becomes more robust over a wider C concentration range. Results show that RMSEP in the proposed PLS model decreased to 4.47% from 5.52% for the conventional PLS with full spectrum input, while R 2 remained as high as 0.999, and RMSEC&P was reduced from 3.60% to 2.92%, showing the overall improvement of the proposed PLS model.  相似文献   
35.
36.
Sixty-five electron-transfer reactions including 27 new 0, +1 couples have been added to our data set of cross-reactions between 0 and +1 couples, bringing it to 206 reactions involving 72 couples that have been studied by stopped-flow kinetics in acetonitrile containing supporting electrolyte at 25 degrees C, formal potentials determined by cyclic voltammetry, and analyzed using Marcus cross-rate theory. Perhaps surprisingly, a least-squares analysis demonstrates that intrinsic rate constants exist that predict the cross-rate constants to within a factor of 2 of the observed ones for 93% of the reactions studied, and only three of the reactions have a cross-rate constant that lies outside of the factor of 3, that corresponds to a factor of 10 uncertainty in the rate constant for an unknown couple. Many triarylamines, which have very high intrinsic reactivity, are included among the newly studied couples. The enthalpy contribution to the Marcus reorganization energy, lambda'v, has been calculated for 46 of the couples studied, at the (U)B3LYP/6-31+G (or for the larger and lower barrier compounds, at the less time-consuming (U)B3LYP/6-31G) level. In combination with a modified Levich and Dogodnadze treatment that assumes that the rate constant is proportional to (KeHab2/lambda1/2) exp[-DeltaG/RT], this allows estimation of the electronic coupling (Hab) at the transition state for intermolecular electron transfer, (more properly H'ab, the product of the square root of the encounter complex formation constant times Hab) for these couples. Although the principal factor affecting intermolecular electron-transfer rate constants is clearly lambda, H'ab effects are easily detectable, and the dynamic range in our estimates of them is over a factor of 600.  相似文献   
37.
Zero‐dimensional (0D) organic metal halide hybrids, in which organic and metal halide ions cocrystallize to form neutral species, are a promising platform for the development of multifunctional crystalline materials. Herein we report the design, synthesis, and characterization of a ternary 0D organic metal halide hybrid, (HMTA)4PbMn0.69Sn0.31Br8, in which the organic cation N‐benzylhexamethylenetetrammonium (HMTA+, C13H19N4+) cocrystallizes with PbBr42?, MnBr42?, and SnBr42?. The wide band gap of the organic cation and distinct optical characteristics of the three metal bromide anions enabled the single‐crystalline “host–guest” system to exhibit emissions from multiple “guest” metal halide species simultaneously. The combination of these emissions led to near‐perfect white emission with a photoluminescence quantum efficiency of around 73 %. Owing to distinct excitations of the three metal halide species, warm‐ to cool‐white emissions could be generated by controlling the excitation wavelength.  相似文献   
38.
Nanoparticle surfaces functionalized with proteins or other biomolecules provide a mechanism for interfacing the unique properties of nanomaterials with biological samples. In most of these studies, the biomolecule is conjugated to a gold nanoparticles (AuNP) surface through the thiol group of native or introduced cysteine residues. Here we demonstrate the direct attachment of a hexa-histidine tagged (His(6)) peptide to a 1.5 nm AuNP. Binding occurs via a specific interaction between the Ne of the His imidazole, forming a 1:1 stoichiometric complex. Given the widespread use of histidine tags in producing recombinant proteins, this approach promises to expand the applications of AuNP in biological applications.  相似文献   
39.
40.
We report high resolution spectra for the medium molecular weight proteins myoglobin and cytochrome-c obtained using a custom desorption electrospray ionisation (DESI) source coupled to a Bruker Daltonics 12 T Apex Qe Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS). The DESI source was designed for accurate alignment and reproduction of critical geometric variables. A two axis motorised stage was included to enable automated rastering of the sample under the DESI plume. Spectra for the intact proteins have been obtained under single-acquisition conditions and a top-down analysis of cytochrome-c was performed using both collision induced dissociation (CID) and electron capture dissociation (ECD) of the isolated [M+15H]15+ charge state. The sequence coverage is comparable to that obtained using electrospray ionisation, demonstrating the utility of top-down protein analysis by DESI FTICR-MS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号