首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   248篇
  免费   7篇
  国内免费   2篇
化学   132篇
晶体学   2篇
力学   2篇
数学   30篇
物理学   91篇
  2023年   3篇
  2022年   5篇
  2021年   2篇
  2020年   5篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   2篇
  2014年   3篇
  2013年   12篇
  2012年   10篇
  2011年   16篇
  2010年   7篇
  2009年   6篇
  2008年   15篇
  2007年   12篇
  2006年   9篇
  2005年   10篇
  2004年   7篇
  2003年   5篇
  2002年   2篇
  2001年   4篇
  2000年   14篇
  1999年   5篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1974年   5篇
  1973年   3篇
  1972年   2篇
  1966年   1篇
排序方式: 共有257条查询结果,搜索用时 15 毫秒
11.
Nanocrystalline iron oxide aerogels as mesoporous magnetic architectures   总被引:1,自引:0,他引:1  
We have developed crystalline nanoarchitectures of iron oxide that exhibit superparamagnetic behavior while still retaining the desirable bicontinuous pore-solid networks and monolithic nature of an aerogel. Iron oxide aerogels are initially produced in an X-ray-amorphous, high-surface-area form, by adapting recently established sol-gel methods using Fe(III) salts and epoxide-based proton scavengers. Controlled temperature/atmosphere treatments convert the as-prepared iron oxide aerogels into nanocrystalline forms with the inverse spinel structure. As a function of the bathing gas, treatment temperature, and treatment history, these nanocrystalline forms can be reversibly tuned to predominantly exhibit either Fe(3)O(4) (magnetite) or gamma-Fe(2)O(3) (maghemite) phases, as verified by electron microscopy, X-ray and electron diffraction, microprobe Raman spectroscopy, and magnetic analysis. Peak deconvolution of the Raman-active Fe-O bands yields valuable information on the local structure and vacancy content of the various aerogel forms, and facilitates the differentiation of Fe(3)O(4) and gamma-Fe(2)O(3) components, which are difficult to assign using only diffraction methods. These nanocrystalline, magnetic forms retain the inherent characteristics of aerogels, including high surface area (>140 m(2) g(-1)), through-connected porosity concentrated in the mesopore size range (2-50 nm), and nanoscale particle sizes (7-18 nm). On the basis of this synthetic and processing protocol, we produce multifunctional nanostructured materials with effective control of the pore-solid architecture, the nanocrystalline phase, and subsequent magnetic properties.  相似文献   
12.
Abstract

Computer simulation studies of the energy distribution of transmitted ions such as alpha-particles, He-, and B-ions through crystalline silicon, using the enhanced binary-collision cascade simulator MARLOWE, will be reviewed. The enhancement includes an additional electronic-energy loss (EEL) model which takes into account explicitly both the target electron density variation via the structure factors and the electron density of the projectile. Investigations of the stopping power for He ions and protons in silicon, at intermediate- and high-energies, based on the adapted EEL model and a velocity-dependent effective charge will be presented. The overall agreement between the calculated and experimentally determined stopping power data and the simulated and measured transmission spectra will be demonstrated. Effects of energy-loss straggling, core-electron contribution to the energy loss at high-energies and charge-state effects at low energies on the transmission spectra will also be discussed.  相似文献   
13.
Zero‐dimensional (0D) organic metal halide hybrids, in which organic and metal halide ions cocrystallize to form neutral species, are a promising platform for the development of multifunctional crystalline materials. Herein we report the design, synthesis, and characterization of a ternary 0D organic metal halide hybrid, (HMTA)4PbMn0.69Sn0.31Br8, in which the organic cation N‐benzylhexamethylenetetrammonium (HMTA+, C13H19N4+) cocrystallizes with PbBr42?, MnBr42?, and SnBr42?. The wide band gap of the organic cation and distinct optical characteristics of the three metal bromide anions enabled the single‐crystalline “host–guest” system to exhibit emissions from multiple “guest” metal halide species simultaneously. The combination of these emissions led to near‐perfect white emission with a photoluminescence quantum efficiency of around 73 %. Owing to distinct excitations of the three metal halide species, warm‐ to cool‐white emissions could be generated by controlling the excitation wavelength.  相似文献   
14.
Reactions of the anticancer complex [(eta(6)-bip)Ru(en)Cl](+) (where bip is biphenyl and en is ethylenediamine) with the tripeptide glutathione (gamma-L-Glu-L-Cys-Gly; GSH), the abundant intracellular thiol, in aqueous solution give rise to two ruthenium cluster complexes, which could not be identified by electrospray mass spectrometry (ESI-MS) using a quadrupole mass analyzer. Here we use Fourier transform ion cyclotron mass spectrometry (nanoLC-FT-ICR MS) to identify the clusters separated by nanoscale liquid chromatography as the tetranuclear complex [{(eta(6)-bip)Ru(GSO(2))}(4)](2-) (2) and dinuclear complex [{(eta(6)-bip)Ru(GSO(2))(2)}(2)](8-) (3) containing glutathione sulfinate (GSO(2)) ligands. Use of (18)OH(2) showed that oxygen from water can readily be incorporated into the oxidized glutathione ligands. These data illustrate the power of high-resolution MS for identifying highly charged multinuclear complexes and elucidating novel reaction pathways for metallodrugs, including ligand-based redox reactions.  相似文献   
15.
In this paper we outline two recent results which demonstrate the utility of deep-level engineering in silicon photonics. We describe the integration of silicon waveguide p-i-n photo-detectors in a ring (or race-track) resonator structure. The detectors are made sensitive to wavelengths around 1,550?nm via the introduction of deep-levels into the intrinsic volume of the waveguide detector. By exploiting the multiple-pass of the optical signal through the detector, we are able to significantly decrease the size of the detector structure (relative to straight waveguide detectors) while maintaining excellent responsivity on resonance. We also describe the use of deep-levels for optical modulation. Preliminary results show that thallium doped silicon waveguides may be switched between a dark and transparent condition through the variation of phosphorus doping. It is suggested that active devices may be fabricated in such a way as to vary the occupancy of the thallium level through field mediated modulation. The straightforward fabrication methods described lend themselves to a high-volume, high yield manufacturing process which should find general applicability in wavelength division multiplexing systems.  相似文献   
16.
Quadrupole magnetic flow sorting (QMS) is being adapted from the separation of suspensions of single cells (<15 μm) to the isolation of pancreatic islets (150–350 μm) for transplant. To achieve this goal, the critical QMS components have been modeled and engineered to optimize the separation process. A flow channel has been designed, manufactured, and tested. The quadrupole magnet assembly has been designed and verified by finite element analysis. Pumps have been selected and verified by test. Test data generated from the pumps and flow channel demonstrate that the fabricated channel and peristaltic pumps fulfill the requirements of successful QMS separation.  相似文献   
17.
In aqueous solution (pH 9) containing N2O, the unsaturated acids trans-FcCHCH(CH2)nCO2H (n = 0 and 1) and FcCCCO2H each undergo photo-oxidation, upon illumination with u.v. light of wavelength 240-250 nm, giving dipolar ferricenium species which may be chemically reduced back to the original acids. The mechanism of photo-oxidation, which is inhibited by ethanol, appears to be similar to that previously proposed for saturated ω-ferrocenylalkanoic acids.  相似文献   
18.
The anions of 4-([3]ferrocenophanyl)butanoic acids (Id and IId), when excited by light of around 240 nm wavelength in aqueous solution in the presence of N2O, undergo photo-oxidation to zwitterions (III and IV respectively) in a manner completely analogous to the reaction of 4-ferrocenylbutanoate anion. The differences in the kinetic parameters of the reactions are thought to be attributable in part to slight tilting of the cyclopentadienyl rings caused by the connecting trimethylene bridge.  相似文献   
19.
Electrostatic and hydrophobic forces are generally recognized as important in bacterial adhesion. Current continuum models for these forces often wrongly predict measurements of bacterial adhesion forces. The hypothesis tested here is that even qualitative guides to bacterial adhesion often require more than continuum information about hydrophobic forces; they require knowledge about molecular details of the bacteria and substrate surface. In this study, four different strains of bacteria were adsorbed to silica surfaces hydrophobized with alkylsilanes. The thickness of the lipopolysaccharide layers varied on the different bacteria, and the lengths of the alkylsilane molecules were varied from experiment to experiment. Bacterial adhesion was assessed using column experiments and atomic force microscopy (AFM) experiments. Results show that hydrophobized surfaces have higher bacterial sticking coefficients and stronger adhesion forces than bare silica surfaces, as expected. However, adhesion decreased as the solution Debye length became longer than the alkylsilane, perhaps since the silane molecules could not "reach" the bacterial surface. Similarly, those bacteria with a long o-antigen layer had decreased adhesion, perhaps since the silane molecules could not reach surface-bound proteins on the bacteria. This study reveals that macroscopic measurements such as contact angle are not able to fully describe bacterial adhesion; rather, additional details such as the molecular length are required to predict adhesion.  相似文献   
20.
The space group of alpha(')-NaV2O5 turns below T(c) = 34 K from Pmmn with all V sites equivalent, into Fmm2 with three independent vanadium sites per layer. This is incompatible with models of charge ordering into V4+ and V5+. Our structure determination indicates that the phase transition consists of a charge ordering with three distinct valence states, formally V4+, V4.5+, and V5+. The singlet formation is not associated with dimerization on the spin ladder, but with the formation of spin clusters. Finally, we ascribe the quadrupling of the c axis to the large polarizability of the V2O5 skeleton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号