首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1941篇
  免费   81篇
  国内免费   6篇
化学   1284篇
晶体学   11篇
力学   70篇
综合类   2篇
数学   211篇
物理学   450篇
  2023年   12篇
  2022年   18篇
  2021年   38篇
  2020年   35篇
  2019年   19篇
  2018年   28篇
  2017年   16篇
  2016年   50篇
  2015年   44篇
  2014年   57篇
  2013年   100篇
  2012年   136篇
  2011年   131篇
  2010年   79篇
  2009年   85篇
  2008年   132篇
  2007年   126篇
  2006年   113篇
  2005年   96篇
  2004年   71篇
  2003年   72篇
  2002年   83篇
  2001年   30篇
  2000年   44篇
  1999年   19篇
  1998年   21篇
  1997年   25篇
  1996年   31篇
  1995年   18篇
  1994年   14篇
  1993年   21篇
  1992年   24篇
  1991年   13篇
  1990年   18篇
  1989年   20篇
  1988年   9篇
  1986年   13篇
  1985年   16篇
  1984年   12篇
  1983年   10篇
  1982年   9篇
  1981年   11篇
  1980年   6篇
  1979年   14篇
  1978年   7篇
  1977年   13篇
  1976年   10篇
  1974年   11篇
  1973年   6篇
  1972年   7篇
排序方式: 共有2028条查询结果,搜索用时 31 毫秒
211.
The dispersion of highly hydrophobic carbon materials such as carbon nanotubes in biological media is a challenging issue. Indeed, the nonspecific adsorption of proteins occurs readily when the nanotubes are introduced in biological media; therefore, a methodology to control adsorption is in high demand. To address this issue, we developed a bifunctional linker derived from pyrene that selectively enables or prevents the adsorption of proteins on single-wall carbon nanotubes (SWNTs). We demonstrated that it is possible to decrease or completely suppress the adsorption of proteins on the nanotube sidewall by using proper functionalization (either covalent or noncovalent). By subsequently activating the functional groups on the nanotube derivatives, protein adsorption can be recovered and, therefore, controlled. Our approach is simple, straightforward, and potentially suitable for other biomolecules that contain thio or amino groups available for coupling.  相似文献   
212.
Group 12 and silver(I) tetramethyl‐m‐benziporphodimethene (TMBPDM) complexes with phenyl, methylbenzoate, or nitrophenyl groups as meso substituents were synthesized and fully characterized. The dimeric silver(I) complex displays an unusual η2,π coordination from the β‐pyrrolic C?C bond to the silver ion. All of the complexes displayed a close contact between the metal ion and the inner C(22)? H(22) on the m‐phenylene ring. The downfield chemical shifts of H(22) and large coupling constants between CdII and H(22) strongly support the presence of an agostic interaction between the metal ion and inner C(22)–H(22). Crystal structures revealed that the syn form is the predominant conformation for TMBPDM complexes. This is distinctively different from the exclusive anti conformation observed in m‐benziporphyrin and tetraphenyl‐m‐benziporphodimethene (TPBPDM) complexes. Evidently, intramolecular hydrogen‐bonding interactions between axial chloride and methyl groups stabilize syn conformations. Unlike the merely syn conformation observed in the solid‐state structures of TMBPDM complexes that contain an axial chloride, in solution these complexes display highly solvent‐ and temperature‐dependent syn/anti ratio changes. The observation of dynamic 1H NMR spectroscopic scrambling between syn and anti conformations from the titration of chloride ion into the solution of the TMBPDM complex suggests that axial ligand exchange is a likely pathway for the conversion between syn and anti forms. Theoretical calculations revealed that intermolecular hydrogen‐bonding interactions between the axial chloride and CHCl3 stabilizes the anti conformation, which explains the increased ratio for the anti form when dichloromethane or chloroform was used as the solvent.  相似文献   
213.
Hetero- and homochiral diastereomeric bis(metallahelicene)s have been synthesized. They possess a rare Pt(III)-Pt(III) scaffold bridged by benzoato ligands. It is shown that heterochiral (P,M)-bis(Pt(III)-[6]helicene) can isomerize into the homochiral (P,P)- and (M,M)-bis(Pt(III)-[6]helicene). A theoretical study shows a unique σ-π conjugation between the two π-helices and the σ-Pt(III)-Pt(III) scaffold that impacts the strong chiroptical properties.  相似文献   
214.
A new oxidation procedure of alkynes catalyzed by Tp(PPh(3))(CH(3)CN)Ru-Cl is presented, which provides an efficient way to obtain alkenyl 1,2-diketones via ruthenium alkenyl 1,2-diketone intermediates. In contrast, the analogous reactions with Tp(PPh(3))(PhCN)Ru-Cl gave rise to the ruthenium metallacycle complexes.  相似文献   
215.
A hexabenzimidazole ligand was synthesised and used to prepare a hexakis{benzimidazole-ruthenium(II)} complex containing six RuCl(2)(arene) units of which the X-ray structure analysis shows a helical arrangement with alternating up and down benzymidazole-ruthenium(II) branches attached to a central benzene ring. The reactivity of the prepared complex with phosphite and carbonate was investigated and revealed the weakness of (benzimidazole)N-Ru bonds and the release of the polydentate ligand.  相似文献   
216.
Karila D  Leman L  Dodd RH 《Organic letters》2011,13(21):5830-5833
A copper(I)-catalyzed reaction of a variety of 4-aryl-pent-4-enoates with nosyliminoiodane generated in situ provides the corresponding 5-aryl-5-nosylamidomethylbutyrolactones. The reaction presumably proceeds via an aziridine intermediate, which could be isolated in one case.  相似文献   
217.
In this contribution we present two ligands based on a do3a platform containing a picolinate group attached to the fourth nitrogen atom of the cyclen unit, which are designed for stable lanthanide complexation in aqueous solutions. Potentiometric measurements reveal that the thermodynamic stability of the complexes is very high (log K = 21.2-23.5), being comparable to that of the dota analogues. Luminescence lifetime measurements performed on solutions of the Eu(III) and Tb(III) complexes indicate that the complexes are nine coordinate with no inner-sphere water molecules. A combination of density functional theory (DFT) calculations and NMR measurements shows that for the complexes of the heaviest lanthanides there is a major isomer in solution consisting of the enantiomeric pair Λ(δδδδ) and Δ(λλλλ), which provides square antiprismatic coordination (SAP) around the metal ion. Analysis of the Yb(III)-induced paramagnetic shifts unambiguously confirms that these complexes have SAP coordination in aqueous solution. For the light lanthanide ions however both the SAP and twisted-square antiprismatic (TSAP) isomers are present in solution. Inversion of the cyclen ring appears to be the rate-determining step for the Λ(δδδδ) ? Δ(λλλλ) enantiomerization process observed in the Lu(III) complexes. The energy barriers obtained from NMR measurements for this dynamic process are in excellent agreement with those predicted by DFT calculations. The energy barriers calculated for the arm-rotation process are considerably lower than those obtained for the ring-inversion path. Kinetic studies show that replacement of an acetate arm of dota by a picolinate pendant results in a 3-fold increase in the formation rate of the corresponding Eu(III) complexes and a significant increase of the rates of acid-catalyzed dissociation of the complexes. However, these rates are 1-2 orders of magnitude lower than those of do3a analogues, which shows that the complexes reported herein are remarkably inert with respect to metal ion dissociation.  相似文献   
218.
The role of the nitrogen atom on the electronic and magnetic couplings of the mono-oxidized and bi-oxidized pyridine-containing complex models [2,6-{Cp(dpe)Fe-C≡C-}(2)(NC(5)H(3))](n+) and [3,5-{Cp(dpe)Fe-C≡C-}(2)(NC(5)H(3))](n+) is theoretically tackled with the aid of density-functional theory (DFT) and multireference configuration interaction (MR-CI) calculations. Results are analyzed and compared to those obtained for the reference complex [1,3-{Cp*(dppe)Fe-C≡C-)}(2)(C(6)H(4))](n+). The mono-oxidized species show an interesting behavior at the borderline between spin localization and delocalization and one through-bond communication path among the two involving the central ring, is favored. Investigation of the spin state of the dicationic complexes indicates ferromagnetic coupling, which can differ in magnitude from one complex to the other. Very importantly, electronic and magnetic properties of these species strongly depend not only upon the location of the nitrogen atom in the ring versus that of the organometallic end-groups but also upon the architectural arrangement of one terminus, with respect to the other and/or vis-à-vis the central ring. To help validate the theoretical results, the related families of compounds [1,3-{Cp*(dppe)Fe-C≡C-)}(2)(C(6)H(4))](n+), [2,6-{Cp*(dppe)Fe-C≡C-}(2)(NC(5)H(3))](n+), [3,5-{Cp*(dppe)Fe-C≡C-}(2)(NC(5)H(3))](n+) (n = 0-2) were experimentally synthesized and characterized. Electrochemical, spectroscopic (infrared (IR), M?ssbauer), electronic (near-infrared (NIR)), and magnetic properties (electron paramagnetic resonance (EPR), superconducting quantum interference device (SQUID)) are discussed and interpreted in the light of the theoretical data. The set of data obtained allows for many strong conclusions to be drawn. A N atom in the long branch increases the ferromagnetic interaction between the two Fe(III) spin carriers (J > 500 cm(-1)), whereas, when placed in the short branch, it dramatically reduces the magnetic exchange in the di-oxidized species (J = 2.14(5) cm(-1)). In the mixed-valence compounds, when the N atom is positioned on the long branch, the intermediate excited state is higher in energy than the different ground-state conformers and the relaxation process provides exclusively the Fe(II)/Fe(III) localized system (H(ab) ≠ 0). Positioning the N atom on the short branch modifies the energy profile and the diabatic mediating state lies just above the reactant and product diabatic states. Consequently, the LMCT transition becomes less energetic than the MMCT transition. Here, the direct coupling does not occur (H(ab) = 0) and only the coupling through the bridge (c) and the reactant (a) and product (b) diabatic states is operating (H(ac) = H(bc) ≠ 0).  相似文献   
219.
The ionization energies (IEs) and heats of formation (ΔH°(f0)/ΔH°(f298)) for thiophene (C(4)H(4)S), furan (C(4)H(4)O), pyrrole (C(4)H(4)NH), 1,3-cyclopentadiene (C(4)H(4)CH(2)), and borole (C(4)H(4)BH) have been calculated by the wave function-based ab initio CCSD(T)/CBS approach, which involves the approximation to the complete basis set (CBS) limit at the coupled-cluster level with single and double excitations plus a quasi-perturbative triple excitation [CCSD(T)]. Where appropriate, the zero-point vibrational energy correction (ZPVE), the core-valence electronic correction (CV), and the scalar relativistic effect (SR) are included in these calculations. The respective CCSD(T)/CBS predictions for C(4)H(4)S, C(4)H(4)O, C(4)H(4)NH, and C(4)H(4)CH(2), being 8.888, 8.897, 8.222, and 8.582 eV, are in excellent agreement with the experimental values obtained from previous photoelectron and photoion measurements. The ΔH°(f0)/ΔH°(f298) values for the aforementioned molecules and their corresponding cations have also been predicted by the CCSD(T)/CBS method, and the results are compared with the available experimental data. The comparisons between the CCSD(T)/CBS predictions and the experimental values for C(4)H(4)S, C(4)H(4)O, C(4)H(4)NH, and C(4)H(4)CH(2) suggest that the CCSD(T)/CBS procedure is capable of predicting reliable IE values for five-membered-ring molecules with an uncertainty of ±13 meV. In view of the excellent agreements between the CCSD(T)/CBS predictions and the experimental values for C(4)H(4)S, C(4)H(4)O, C(4)H(4)NH, and C(4)H(4)CH(2), the similar CCSD(T)/CBS IE and ΔH°(f0)/ΔH°(f298) predictions for C(4)H(4)BH, whose thermochemical data are not readily available due to its reactive nature, should constitute a reliable data set. The CCSD(T)/CBS IE(C(4)H(4)BH) value is 8.868 eV, and ΔH°(f0)/ΔH°(f298) values for C(4)H(4)BH and C(4)H(4)BH(+) are 269.5/258.6 and 1125.1/1114.6 kJ/mol, respectively. The highest occupied molecular orbitals (HOMO) of C(4)H(4)S, C(4)H(4)O, C(4)H(4)NH, C(4)H(4)CH(2), and C(4)H(4)BH have also been studied by the natural bond orbital (NBO) method, and the extent of π-electron delocalization in these five-membered rings are discussed in correlation with their molecular structures and orbitals.  相似文献   
220.
The higher basicity of carbenes has been exploited with H···π non-bonding interactions to design a new class of organic superbases. This simple molecular architecture gains a basicity comparable to some of the known functionalized nitrogen superbases and phosphazenes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号