首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   0篇
化学   63篇
数学   1篇
物理学   1篇
  2021年   2篇
  2020年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   5篇
  2009年   12篇
  2008年   4篇
  2007年   6篇
  2006年   10篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1991年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
11.
Investigation of chemical exposure inside the homes and offices where people spend the majority of their lives has only recently begun. These chemicals are degraded much more slowly than outdoor because they are more protected from sunlight, severe environmental conditions and microbial activity. Hence, indoor dust has been recognized as an important exposure pathway for organic contaminants. Pyrethroids are synthetic insecticides widely used in domestic environment for numerous applications and also in agriculture. Chlorobenzenes are a family of compounds used as intermediates in the production of a wide range of household consumer products. Nitromusks are a kind of synthetic musks used in the production of cleaning agents, detergents, and personal care products. A high-throughput method for the determination of these compounds in indoor dust samples has been developed. Microwave-assisted solvent extraction was used as the extraction technique whereas quantification of compounds was carried out by gas chromatography with micro-electron-capture detection. Several cleanup procedures were tested and finally a non-classical "on batch" procedure was selected, which allows increasing the throughput of the analysis while decreasing sample manipulation. Extraction conditions were optimized using a multifactorial experimental design approach. Quantitative recovery (84-103%) was achieved for all compounds and method precision was satisfactory. Limits of detection ranged from 0.22 ng g(-1) for lindane to 40 ng g(-1) for 1,4-dichlorobenzene. Standard reference material SRM 2585 was analyzed and the obtained values were in good agreement with the reported reference values for organochlorinated compounds and nitromusks. Pyrethroids and polychlorobenzenes have been analyzed for the first time in this reference material and some of them have been found. In addition, real samples collected in houses of north-western Spain have been analyzed by the proposed method and 17 of the 22 target compounds have been detected in the samples.  相似文献   
12.
A method based on solid-phase enrichment followed by headspace (HS)-solid-phase microextraction (SPME) is optimized to determine pyrethroids in air. By active sampling, pyrethroids present in air are retained in 25 mg of activated florisil and then transferred from the solid sorbent to an SPME fiber in the HS mode. A small volume of solvent is added to the adsorbent to favor this process. The selection of the adsorbent, as well as the optimization of certain parameters affecting the SPME, is performed using an experimental design strategy. Linearity is studied by external calibration in a wide range of concentrations using gas chromatography coupled to three different detection systems: electron capture detection, micro-electron capture detection, and mass spectrometry. An analysis of variance with a lack-of-fit test is run to validate the calibration data. Breakthrough of the adsorbent was studied sampling from 0.5 to 10 m(3) air, demonstrating that 1 m(3) air could be sampled without losses of pyrethroids. Quantitative recoveries are obtained at three concentration levels, with adequate repeatability. Limits of detection of the method are estimated at the sub-ng/m(3) level in most cases, well below the regulatory limits. Finally, several real indoor samples are collected and analyzed by the proposed method. Identification and quantitation of all target analytes present in the room air are possible.  相似文献   
13.
A depletion solid-phase microextraction (SPME) method based on multiple SPME extraction was applied to estimate fibre coating-water distribution constants (Kfs) of brominated flame retardants. Several polybrominated diphenyl ethers (PBDEs) including compounds present in the commercial mixture "Pentamix", and two polybrominated biphenyls (PBBs) were considered as target analytes. One hundred-micrometer poly(dimethylsiloxane) (PDMS) coating fibre was selected to estimate partition coefficients. SPME kinetics studies at 25 and 100 degrees C were performed. Kfs values obtained at both temperatures for brominated flame retardants were compared with the corresponding octanol-water partition coefficients (Kow) values found in literature. A linear log-log relationship between Kow with Kfs was found. To the best of our knowledge, this is the first study where brominated flame retardants Kfs values are estimated.  相似文献   
14.
Here, we report for the first time a laboratory investigation into the photochemical degradation of 2,2′,4,4′,6-pentabromodiphenyl ether (BDE-100) in ice solid samples using an artificial UV light source. Solid phase microextraction (SPME) was used as a sensitive extraction technique for monitoring trace amounts of the hydrophobic pollutant and its photoproducts. The results showed that ice photolysis kinetics for BDE-100 is similar to the one observed in the aqueous counterpart. The eight photoproducts identified consisted of brominated diphenyl ethers with lower bromine content and polybrominated dibenzofurans, suggesting two important photodegradation pathways for BDE-100 in ice solid samples: (i) stepwise reductive debromination and (ii) intramolecular elimination of HBr. Similarities in photochemical product arrays observed in the ice and water photolysis of BDE-100 were attributed to a similar mechanism for photochemical decomposition for both phases. Possible involvement of the water molecules in the reactions has been excluded by performing photolysis in D2O ice solid and water samples. Taking advantage of the high preconcentration factor obtained with SPME at low temperatures, a SPME fiber cooled with liquid carbon dioxide down to 0 °C was used as a photoreaction support for BDE-100 allowing the identification of a greater number of photoproducts.  相似文献   
15.
A sample-preparation procedure (extraction and saponification) using microwave energy is proposed for determination of organochlorine pesticides in oyster samples. A Plackett-Burman factorial design has been used to optimize the microwave-assisted extraction and mild saponification on a freeze dried sample spiked with a mixture of aldrin, endrin, dieldrin, heptachlor, heptachorepoxide, isodrin, transnonachlor, p, p'-DDE, and p, p'-DDD. Six variables: solvent volume, extraction time, extraction temperature, amount of acetone (%) in the extractant solvent, amount of sample, and volume of NaOH solution were considered in the optimization process. The results show that the amount of sample is statistically significant for dieldrin, aldrin, p, p'-DDE, heptachlor, and transnonachlor and solvent volume for dieldrin, aldrin, and p, p'-DDE. The volume of NaOH solution is statistically significant for aldrin and p, p'-DDE only. Extraction temperature and extraction time seem to be the main factors determining the efficiency of extraction process for isodrin and p, p'-DDE, respectively. The optimized procedure was compared with conventional Soxhlet extraction.  相似文献   
16.
A method based on solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) has been optimized for the determination of fragrance allergens in water samples. This is the first study devoted to this family of cosmetic ingredients performed by SPME. The influence of parameters such as fibre coating, extraction and desorption temperatures, salting-out effect and sampling mode on the extraction efficiency has been studied by means of a mixed-level factorial design, which allowed the study of the main effects as well as two-factor interactions. Excluding desorption temperature, the other parameters were, in general, very important for the achievement of high response. The final procedure was based on headspace sampling at 100 °C, using polydimethylsiloxane/divinylbenzene fibres. The method showed good linearity and precision for all compounds, with detection limits ranging from 0.001 to 0.3 ng mL−1. Reliability was demonstrated through the evaluation of the recoveries in different real water samples, including baby bathwater and swimming pool water. The absence of matrix effects allowed the use of external standard calibration to quantify the target compounds in the samples. The proposed procedure was applied to the determination of allergens in several real samples. All the target compounds were found in the samples, and, in some cases, at quite high concentrations. The presence and the levels of these chemicals in baby bathwater should be a matter of concern. Baby exposure to fragrance allergens and other cosmetic ingredients through the daily bath  相似文献   
17.
Photo-solid-phase microextraction (photo-SPME) is combined for the first time with natural and simulated sunlight to study the photochemical behaviour of environmental concerning tetra- to hexa-brominated diphenyl ethers. The sunlight photodegradation kinetics of five brominated diphenyl ethers (BDE 47, BDE 100, BDE 99, BDE 154 and BDE 153) has been studied. These BDEs are the most abundant congeners in penta-BDE commercial formulations used as flame-retardants and are considered among the most toxic ones. The five studied BDEs were photolytically labile. The detected photodegradation products include more stable lower brominated diphenyl ethers and polybrominated dibenzofurans (PBDFs). The photoformation and decay kinetics of these photoproducts were also monitorized by photo-SPME. Aqueous photodegradation studies have also been carried out. In this case, SPME is only used as the extraction technique. Obtained results in the aqueous photodegradation experiments were compared with those obtained in photo-SPME experiments.  相似文献   
18.
A viable approach for the analysis of polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) in sewage sludge samples is presented in this paper. The proposed method combines ultrasound-assisted extraction (UAE) of the solid sample and headspace solid-phase microextraction (HS-SPME) of the obtained extract, followed by gas chromatography coupled to tandem mass spectrometry (GC-MS-MS) analysis. Different parameters affecting the extraction process are evaluated and optimized. The addition of a small amount of Florisil to the sample during UAE provides a significant improvement of the chromatographic background and, at the same time, a much more efficient HS-SPME. Extensive method validation is performed using real sewage sludge samples. The proposed method exhibits good performance in terms of linearity and precision, with recoveries exceeding 92% and limits of detection in the sub ng g(-1) level. Practical applicability is demonstrated through the analysis of real contaminated sewage sludge and sediment samples in which some of the target PBDEs are detected and quantified. This proposed combined methodology represents a large time-saving when compared to other classic multi-step solvent extraction methods and it constitutes a suitable approach for the analysis of the target compounds in environmental complex solid samples.  相似文献   
19.
A solid-phase microextraction (SPME) method for the ultra-trace determination of brominated phenols in aqueous samples has been developed and is reported for the first time to the best of our knowledge. 3,5,3',5'-tetrabromobisphenol A (TBBPA), the most widely used brominated flame retardant, and other phenolic flame retardants in commercial use, such as 2,4-dibromophenol (2,4-DBP), 2,4,6-tribromophenol (TBP) and pentabromophenol (PBP) have been included as target analytes. The analytical procedure involves the in situ acetylation-SPME and gas chromatography-mass spectrometry (GC-MS) determination of the target analytes. A multi-factor categorical experimental design was created to study the main parameters affecting the extraction efficiency, allowing also the evaluation of interaction effects between factors. The factors studied were type of fiber, extraction mode, exposing the fiber directly into the sample (DSPME) or into the headspace over the sample (HSSPME), and extraction temperature. Carboxen-polydimethylsiloxane (CAR-PDMS) fiber appeared to be the most suitable of the five fibers tested for the extraction of most compounds, excluding PBP and TBBPA for which polydimethylsiloxane (PDMS) was the most efficient coating. The highest response was achieved for both fibers sampling in headspace mode at 100 degrees C. In order to test the linearity of the method, calibration studies were performed with both CAR-PDMS and PDMS coatings. For both fibers, the method was linear in a range of 2 orders of magnitude, giving relative standard deviation (RSD%) below 10% for most compounds and detection limits at the low pg/mL level. In addition, the feasibility of the method for simultaneous determination of chlorinated and brominated phenols was studied. Finally, the method was applied to several real samples including tap water and effluent and influent waste water samples from an urban treatment plant, in which several phenolic compounds, such as phenol, methylphenols and chlorophenols, could be detected and quantified.  相似文献   
20.
Fragrances are ubiquitous pollutants in the environment, present in the most of household products, air fresheners, insecticides and cosmetics. Commercial perfumes may contain hundreds of individual fragrance chemicals. In addition to the widespread use and exposure to fragranced products, many of the raw fragrance materials have limited available health and safety data. Because of their nature as artificial fragrances, inhalation should be considered as an important exposure pathway, especially in indoor environments. In this work, a very simple, fast, and sensitive methodology for the analysis of 24 fragrance allergens in indoor air is presented. Considered compounds include those regulated by the EU Directive, excluding limonene; methyl eugenol was also included due to its toxicity. The proposed methodology is based on the use of a very low amount of adsorbent to retain the target compounds, and the rapid ultrasound-assisted solvent extraction (UAE) using a very low volume of solvent which avoids further extract concentration. Quantification was performed by gas chromatography coupled to mass spectrometry (GC–MS). The influence of main factors involved in the UAE step (type of adsorbent and solvent, solvent volume and extraction time) was studied using an experimental design approach to account for possible factor interactions. Using the optimized procedure, 0.2 m−3 air are sampled, analytes are retained on 25 mg Florisil, from which they are extracted by UAE (5 min) with 2 mL ethyl acetate. Linearity was demonstrated in a wide concentration range. Efficiency of the total sampling-extraction process was studied at several concentration levels (1, 5 and 125 μg m−3), obtaining quantitative recoveries, and good precision (RSD < 10%). Method detection limits were ≤0.6 μg m−3. Finally, the proposed method was applied to real samples collected in indoor environments in which several of the target compounds were determined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号