首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   3篇
化学   70篇
力学   1篇
数学   9篇
物理学   12篇
  2022年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   8篇
  2011年   14篇
  2010年   4篇
  2009年   3篇
  2008年   5篇
  2007年   9篇
  2006年   2篇
  2005年   7篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1997年   3篇
  1992年   1篇
  1989年   1篇
  1982年   1篇
排序方式: 共有92条查询结果,搜索用时 15 毫秒
21.
Caged supramolecular systems are promising hosts for guest inclusion, separation, and stabilization. Well‐studied examples are mainly metal‐coordination‐based or covalent architectures. An anion‐coordination‐based cage that is capable of encapsulating halocarbon guests is reported for the first time. This A4L4‐type (A=anion) tetrahedral cage, [(PO4)4 L 4]12?, assembled from a C3‐symmetric tris(bisurea) ligand ( L ) and phosphate ion (PO43?), readily accommodates a series of quasi‐tetrahedral halocarbons, such as the Freon components CFCl3, CF2Cl2, CHFCl2, and C(CH3)F3, and chlorocarbons CH2Cl2, CHCl3, CCl4, C(CH3)Cl3, C(CH3)2Cl2, and C(CH3)3Cl. The guest encapsulation in the solid state is confirmed by crystal structures, while the host–guest interactions in solution were demonstrated by NMR techniques.  相似文献   
22.
The protective properties of trehalose on cholesterol-containing lipid dipalmitoylphosphatidylcholine (DPPC) bilayers are studied through molecular simulations. The ability of the disaccharide to interact with the phospholipid headgroups and stabilize the membrane persists even at high cholesterol concentrations and restricts some of the changes to the structure that would otherwise be imposed by cholesterol molecules. Predictions of bilayer properties such as area per lipid, tail ordering, and chain conformation support the notion that the disaccharide decreases the main melting transition in these multicomponent model membranes, which correspond more closely to common biological systems than pure bilayers. Molecular simulations indicate that the membrane dynamics are slowed considerably by the presence of trehalose, indicating that high sugar concentrations would serve to avert possible phase separations that could arise in mixed phospholipid systems. Various time correlation functions suggest that the character of the modifications in lipid dynamics induced by trehalose and cholesterol is different in the hydrophilic and hydrophobic regions of the membrane.  相似文献   
23.
24.
25.
[Chemical reaction: See text] A systematic approach to the regio- and stereoselective synthesis of aminoinositols and 1,2-diaminoinositols arising from tetra-O-benzylconduritol B epoxide (9) and its aziridine analogue 22, respectively, is described. In all cases, the synthetic methodologies rely on the regio- and stereocontrolled azidolysis of the starting precursors to give the corresponding trans regioadducts. Subsequent functional group manipulation under strict configurational control affords the isomeric cis adducts. Chemoselective functionalization of the diamine moiety in 1,2-diaminoinositol derivatives can be achieved by the proper design of the reaction sequence and choice of reagents. The described protocols allow efficient access to each of the eight possible configurations of the 1,2-diamino and 1,2-amino alcohol moieties from chemical modifications of the epoxide moiety on the common precursor 9.  相似文献   
26.
27.
A chelation-controlled aminolysis and azidolysis of cyclitol epoxides with Yb(OTf)(3) has been disclosed. The presence of a free OH group able to direct the coordination with the lanthanide seems essential for an efficient regiocontrol of the process.  相似文献   
28.
The present work uses a micromechanical force apparatus to directly measure cyclopentane clathrate hydrate cohesive force and hydrate-steel adhesive force, as a function of contact time, contact force and temperature. We present a hydrate interparticle force model, which includes capillary and sintering contributions and is based on fundamental interparticle force theories. In this process, we estimate the cyclopentane hydrate tensile strength to be approximately 0.91 MPa. This hydrate interparticle force model also predicts the effect of temperature on hydrate particle cohesion force. Finally, we present the first direct measurements of hydrate cohesive force in the gas phase to be 9.1 ± 2.1 mN/m at approximately 3 °C (as opposed to 4.3 ± 0.4 mN/m in liquid cyclopentane).  相似文献   
29.
In this study, we use molecular dynamics simulations to investigate and compare the interactions of DPPC bilayers with and without saccharides (glucose or trehalose) under dehydrated conditions. Results from the simulations indicate that unilamellar bilayers lose their structural integrity under dehydrated conditions in the absence of saccharides; however, in the presence of either glucose or trehalose, the bilayers maintain their stability. Hydrogen bond analysis shows that the saccharide molecules displace a significant amount of water surrounding the lipid headgroups. At the same time, the additional hydrogen bonds formed between water and saccharide molecules help to maintain a hydration layer on the lipid bilayer interface. On the basis of the hydrogen bond distributions, trehalose forms more hydrogen bonds with the lipids than glucose, and it is less likely to interact with neighboring saccharide molecules. These results suggest that the interaction between the saccharide and lipid molecules through hydrogen bonds is an essential component of the mechanism for the stabilization of lipid bilayers.  相似文献   
30.
An optimized procedure for the diastereoselective allylation under aqueous Barbier conditions of a series of alpha-amino aldehydes with our new chiral building block (S(s))-3-chloro-2-(p-tolylsulfinyl)-1-propene [(S(s))-1a] to afford enantiomerically pure sulfinylamino alcohols in good yields and diastereoselectivites is reported. High levels of diastereoinduction can be achieved from alpha-amino aldehydes configurationally related to natural alpha-amino acids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号