首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21672篇
  免费   4046篇
  国内免费   3198篇
化学   15716篇
晶体学   299篇
力学   1336篇
综合类   302篇
数学   2589篇
物理学   8674篇
  2024年   56篇
  2023年   387篇
  2022年   749篇
  2021年   784篇
  2020年   910篇
  2019年   893篇
  2018年   768篇
  2017年   730篇
  2016年   1014篇
  2015年   1092篇
  2014年   1327篇
  2013年   1634篇
  2012年   1971篇
  2011年   2062篇
  2010年   1485篇
  2009年   1497篇
  2008年   1595篇
  2007年   1388篇
  2006年   1307篇
  2005年   1088篇
  2004年   910篇
  2003年   695篇
  2002年   704篇
  2001年   601篇
  2000年   470篇
  1999年   420篇
  1998年   328篇
  1997年   332篇
  1996年   287篇
  1995年   241篇
  1994年   224篇
  1993年   161篇
  1992年   113篇
  1991年   129篇
  1990年   110篇
  1989年   76篇
  1988年   75篇
  1987年   64篇
  1986年   46篇
  1985年   33篇
  1984年   29篇
  1983年   28篇
  1982年   27篇
  1981年   18篇
  1980年   16篇
  1979年   6篇
  1976年   6篇
  1975年   8篇
  1959年   5篇
  1957年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Breaking the electroneutrality of sp2 carbon lattice is a viable way for nanocarbon material to modulate the charge delocalization and to further alter the electrocatalytic activity. Positive charge spreadsheeting is preferable for catalyzing the oxygen reduction reaction (ORR) and other electrochemical reactions. Analogously to the case of intramolecular charge transfer by heteroatom doping, electrons in the conjugated carbon lattice can be redistributed by the intermolecular charge transfer from the nanocarbon material to the polyelectrolyte. A copolymeric electrolyte, epichlorohydrin-dimethylamine copolymer (EDC) was synthesized. The EDC-modified carbon nanotube (CNT) hybrid was subsequently fabricated by sonication treatment and served as a metal-free carbonaceous electrocatalyst with remarkable catalytic activity and stability. The resultant hybrid presents positive charge spreadsheeting on CNT as a result of the interfacial electron transfer from CNT to EDC. DFT calculations were further carried out to reveal that the enhancement of the wrapped EDC polyelectrolyte originates from the synergetic effect of the quaternary ammonium-hydroxyl covalently bonded structure. The CNT-EDC hybrid not only provides an atomically precise regulation to modulate nanocarbon materials from inactive carbonaceous materials into efficient metal-free catalysts, but it also opens new avenues to develop metal-free catalysts with well-defined and highly active sites.  相似文献   
992.
The interplay between the self-assembly and surface chemistry of 2,3,6,7,10,11-hexaaminotriphenylene (HATP) on Cu(111) was complementarily studied by high-resolution scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) under ultra-high vacuum conditions. To shed light on the competitive metal coordination, comparative experiments were carried out on pristine and nickel-covered Cu(111). Directly after room-temperature deposition of HATP onto pristine Cu(111), self-assembled aggregates were observed by STM, and XPS results indicated still protonated amino groups. Annealing up to 200 °C activated the progressive single deprotonation of all amino groups as indicated by chemical shifts of both the N 1s and C 1s core levels in the XP spectra. This enabled the formation of topologically diverse π–d conjugated coordination networks with intrinsic copper adatoms. The basic motif of these networks was a metal–organic trimer, in which three HATP molecules were coordinated by Cu3 clusters, as corroborated by the accompanying density functional theory (DFT) simulations. Additional deposition of more reactive nickel atoms resulted in both chemical and structural changes with deprotonation and formation of bis(diimino)–Ni bonded networks already at room temperature. Even though fused hexagonal metal-coordinated pores were observed, extended honeycomb networks remained elusive, as tentatively explained by the restricted reversibility of these metal–organic bonds.  相似文献   
993.
In recent years, liquid crystals (LCs) responding to light or electrical fields have gained significant importance as multifunctional materials. Herein, two new series of photoswitchable bent-core liquid crystals (BCLCs) derived from 4-cyanoresorcinol as the central core connected to an azobenzene based wing and a phenyl benzoate wing are reported. The self-assembly of these molecules was characterized by differential scanning calorimetry (DSC), polarizing light microscopy (POM), electro-optical, dielectric, second harmonic generation (SHG) studies, and XRD. Depending on the direction of the COO group in the phenyl benzoate wing, core-fluorination, temperature, and the terminal alkyl chain length, cybotactic nematic and lamellar (smectic) LC phases were observed. The coherence length of the ferroelectric fluctuations increases continuously with decreasing temperature and adopts antipolar correlation upon the condensation into superparaelectric states of the paraelectric smectic phases. Finally, long-range polar order develops at distinct phase transitions; first leading to polarization modulated and then to nonmodulated antiferroelectric smectic phases. Conglomerates of chiral domains were observed in the high permittivity ranges of the synclinic tilted paraelectric smectic phases of these achiral molecules, indicating mirror symmetry breaking. Fine-tuning of the molecular structure leads to photoresponsive bent-core (BC)LCs exhibiting a fast and reversible photoinduced change of the mode of the switching between ferroelectric- and antiferroelectric-like as well as a light-induced switching between an achiral and a spontaneous mirror-symmetry-broken LC phase.  相似文献   
994.
Herein, we report the total synthesis of traumatic lactone and rhizobialide by utilizing allenoic acid to construct the lactone ring. The key starting materials, allenoic acids, could be prepared by the ATA (allenation of terminal alkynes) of a terminal alkyne with an aldehyde that contained a protected hydroxyl group followed by hydrolysis. Importantly, the asymmetric synthesis could be realized just by replacing racemic diphenylprinol with (R)- or (S)-diphenylprinol to deliver the optically active allenoate.  相似文献   
995.
In order to explore the role of fluorine atoms on photostability as well as morphology control of active layer in the presence of 1,4‐butanedithiol (BT), the four polymers with or without fluorine atoms in the backbones including polythieno[3,4‐b]thiophene/benzodithiophene, poly[(4,8‐bis‐(2‐ethylhexyloxy)‐benzo(1,2‐b:4,5‐b9)dithiophene)‐2,6‐diyl‐alt‐(4‐(2‐ethylhexanoyl)‐thieno[3,4‐b]thiophene‐)‐2‐6‐diyl)], poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl)], and poly[4,8‐bis‐(2‐ethyl‐hexyl‐thiophene‐5‐yl)‐benzo[1,2‐b:4,5‐b0]dithiophene‐2,6‐diyl]‐alt‐[2‐(20‐ethyl‐hexanoyl)‐thieno [3,4‐b]thiophen‐4,6‐diyl] were selected for comparison. It is found that the specimens containing fluorine atoms in polymer backbones showed of higher stability after illumination for 1 h in the presence of BT additive, contributing to the higher domain purity. The specific interaction between fluorine atoms and thiol groups was demonstrated by the appearance of novel absorption peak at 2663.1 cm?1, in addition to the broadening of peak at 2556.2 cm?1 ascribing to S? H stretching vibration as confirmed by Fourier transform infrared (FTIR) spectroscopy. The finding may guide the accurate use of thiols as effective solvent additive in morphology and stability optimization. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 941–951  相似文献   
996.
997.
998.
Charge transport across the peptide chains is one of the vital processes in the biological systems, so understanding their charge transport properties is an indispensable prerequisite to explain the complex biochemical phenomenon. Here, we review the charge transport mechanism, the influence of the special groups and the experimental conditions on the charge transport through the peptide backbone by employing the single‐molecule electrical measurements. Besides, we further review the recent progresses in charge transport properties of supramolecular interaction among the adjacent peptide chains. Finally, we discuss some experimental and theoretical contradictions existing in the charge transport through peptides and provide new inspiration for the future development of the bioelectronics at the single‐molecule scale.  相似文献   
999.
We demonstrated a method to pattern catalyst via inkjet printing to grow SWNTs, using metal salt solutions as the inks and an ordinary office-use printer. We printed water solutions of cobalt acetate on hydrophilic Si substrates and grew high quality SWNT films.  相似文献   
1000.
Germanium dioxide (GeO2) aqueous solutions are facilely prepared and the corresponding anode buffer layers (ABLs) with solution process are demonstrated. Atomic force microscopy, X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy measurements show that solution-processed GeO2 behaves superior film morphology and enhanced work function. Using GeO2 as ABL of organic light-emitting diodes (OLEDs), the visible device with tris(8-hydroxy-quinolinato)aluminium as emitter gives maximum luminous efficiency of 6.5 cd/A and power efficiency of 3.5 lm/W, the ultraviolet device with 3-(4-biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole as emitter exhibits short-wavelength emission with peak of 376 nm, full-width at half-maximum of 42 nm, maximum radiance of 3.36 mW/cm2 and external quantum efficiency of 1.5%. The performances are almost comparable to the counterparts with poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) as ABL. The current, impedance, phase and capacitance as a function of voltage characteristics elucidate that the GeO2 ABL formed from appropriate concentration of GeO2 aqueous solution favors hole injection enhancement and accordingly promoting device performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号