首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1591篇
  免费   28篇
  国内免费   4篇
化学   1200篇
晶体学   10篇
力学   16篇
数学   186篇
物理学   211篇
  2024年   7篇
  2023年   25篇
  2022年   41篇
  2021年   55篇
  2020年   61篇
  2019年   56篇
  2018年   24篇
  2017年   26篇
  2016年   53篇
  2015年   56篇
  2014年   47篇
  2013年   75篇
  2012年   93篇
  2011年   121篇
  2010年   60篇
  2009年   50篇
  2008年   97篇
  2007年   110篇
  2006年   85篇
  2005年   90篇
  2004年   60篇
  2003年   66篇
  2002年   68篇
  2001年   13篇
  2000年   13篇
  1999年   5篇
  1998年   11篇
  1997年   7篇
  1996年   34篇
  1995年   22篇
  1994年   17篇
  1993年   11篇
  1992年   16篇
  1991年   4篇
  1990年   6篇
  1989年   3篇
  1988年   5篇
  1987年   5篇
  1986年   2篇
  1985年   6篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
排序方式: 共有1623条查询结果,搜索用时 15 毫秒
101.
    
Polyurethanes (PUs) are highly resistant materials used for building insulation or automotive seats. The polyurethane end-of-life issue must be addressed by the development of efficient recycling techniques. Since conventional recycling processes are not suitable for thermosets, waste management of PU foam is particularly questioning. By coupling biological and chemical processes, this study aimed at developing a green recycling pathway for PU foam using enzymes for depolymerization. For instance, enzymatic degradation of a PU foam synthesized with polycaprolactone and toluene diisocyanate led to a weight loss of 25 % after 24 h of incubation. The corresponding degradation products were recovered and identified as 6-hydroxycaproic acid and a short acid-terminated diurethane. An organometallic-catalyzed synthesis of second-generation polymers from these building blocks was carried out. A polymer with a high average molar mass of 74000 (Mw) was obtained by mixing 50 % of recycled building blocks and 50 % of neat 6-hydroxycaproic acid. A poly(ester urethane) was synthesized without the use of toxic and decried polyisocyanates. It is the first time that a study offers the vision of a recycling loop starting from PU wastes and finishing with a second-generation polymer in a full circular approach.  相似文献   
102.
    
Since the first heavy alkene analogues of germanium and tin were isolated in 1976, followed by West''s disilene in 1981, the chemistry of stable group 14 dimetallenes and dimetallynes has advanced immensely. Recent developments in this field veered the focus from the isolation of novel bonding motifs to mimicking transition metals in their ability to activate small molecules and perform catalysis. The potential of these homonuclear multiply bonded compounds has been demonstrated numerous times in the activation of H2, NH3, CO2 and other small molecules. Hereby, the strong relationship between structure and reactivity warrants close attention towards rational ligand design. This minireview provides an overview on recent developments in regard to bond activation with group 14 dimetallenes and dimetallynes with the perspective of potential catalytic applications of these compounds.

This minireview highlights the recent advances in small molecule activation and catalytic applications of homonuclear dimetallenes, dimetallynes and interconnected bismetallylenes of heavier group 14 elements.  相似文献   
103.
    
The dynamic assembly of a pH-responsive low-molecular-weight gelator (LMWG) within the pre-formed matrix of a second LMWG has been achieved via diffusion of an acid from a reservoir cut into the gel. Self-assembly of the acid-triggered LMWG as it converts from micellar aggregates at basic pH into gel nanofibers at lower pH values can be both spatially and temporally controlled. The pH-responsive LMWG has an impact on the stiffness of the pre-formed gel in the domains in which it assembles. When low acid concentrations are used, LMWG assembly is transient – after the initial proton diffusion phase, the pH rises and disassembly occurs as the system equilibrates. Re-application of additional acid as ‘fuel’ can then re-assemble the LMWG network. Using glucono-δ-lactone (which slowly hydrolyses to gluconic acid) instead of HCl gives slower, more spatially-restricted assembly, and creates longer-lasting pH gradients within the gel. The presence of an agarose polymer gel network improves the mechanical strength of the gels and appears to slightly enhance the rate of proton diffusion. More sophisticated reservoir shapes can be cut into these more mechanically robust gels, enabling the creation of diffusion waves with different geometries, and hence different patterns of LMWG activation. Multiple reservoirs can be used to create overlapping proton diffusion waves, hence achieving differentiated pH patterns in the gel. Using acid diffusion in this way within gels is an intriguing and powerful way of dynamic patterning. The ability to temporally-evolve spatially-resolved patterns using biocompatible weak acids, and the change in rheological performance of the triggered domains, suggest potential future applications of this strategy in tissue engineering.

The assembly of a pH-sensitive LMWG within a pre-formed network of a second LMWG can be achieved by diffusing acids from pre-cut reservoirs, giving rise to patterned gels in which the rheological properties evolve with spatial and temporal control.  相似文献   
104.
    
DNA-encoded library (DEL) technology features a time- and cost-effective interrogation format for the discovery of therapeutic candidates in the pharmaceutical industry. To develop DEL platforms, the implementation of water-compatible transformations that facilitate the incorporation of multifunctional building blocks (BBs) with high C(sp3) carbon counts is integral for success. In this report, a decarboxylative-based hydroalkylation of DNA-conjugated trifluoromethyl-substituted alkenes enabled by single-electron transfer (SET) and subsequent hydrogen atom termination through electron donor–acceptor (EDA) complex activation is detailed. In a further photoredox-catalyzed hydroarylation protocol, the coupling of functionalized, electronically unbiased olefins is achieved under air and within minutes of blue light irradiation through the intermediacy of reactive (hetero)aryl radical species with full retention of the DNA tag integrity. Notably, these processes operate under mild reaction conditions, furnishing complex structural scaffolds with a high density of pendant functional groups.

DNA-encoded library (DEL) technology facilitates the rapid identification of therapeutic candidates in pharmaceutical settings. Herein, the development of photoredox-mediated hydrocarbofunctionalization protocols of olefins is described.  相似文献   
105.
    
Inspired by their excellent thermal stability and strong fatigue resistance, inorganic photochromic materials have been highlighted as promising candidates in various photonic applications ranging from photoswitches, anti-counterfeiting, and encryption to information storage. However, the lack of suitable inorganic materials with both fast photoresponse and strong coloration contrast heavily restricts their applications. Herein, a new strategy is proposed to achieve high photochromic performance via constructing deep-lying traps in ferroelectric ceramics. The obtained K0.5Na0.5NbO3-Eu (KNN-Eu) ceramic exhibits a reversible yellow–gray color change with high fatigue resistance upon alternating illumination (420 nm) and thermal stimulus (450 °C). A fast response time of around 1 s and a large reflectivity difference of 39.2% between the colored and bleached states are simultaneously achieved in KNN-Eu ceramic, which is by far the best performance ever reported in inorganic photochromic materials. Benefiting from these excellent properties, KNN-Eu is the first ferroelectric photochromic ceramic to support an instant and hand-(re)writable information display. The enhanced photochromic performance is expected to facilitate the application of photochromic materials in numerous optical devices and provides a significant guidance to design other inorganic photochromic materials.  相似文献   
106.
107.
    
In this work, we designed, developed, characterized, and investigated a new chelator and its bifunctional derivative for 89Zr labeling and PET-imaging. In a preliminary study, we synthesized two hexadentate chelators named AAZTHAS and AAZTHAG, based on the seven-membered heterocycle AMPED (6-amino-6-methylperhydro-1,4-diazepine) with the aim to increase the rigidity of the 89Zr complex by using N-methyl-N-(hydroxy)succinamide or N-methyl-N-(hydroxy)glutaramide pendant arms attached to the cyclic structure. N-methylhydroxamate groups are the donor groups chosen to efficiently coordinate 89Zr. After in vitro stability tests, we selected the chelator with longer arms, AAZTHAG, as the best complexing agent for 89Zr presenting a stability of 86.4 ± 5.5% in human serum (HS) for at least 72 h. Small animal PET/CT static scans acquired at different time points (up to 24 h) and ex vivo organ distribution studies were then carried out in healthy nude mice (n = 3) to investigate the stability and biodistribution in vivo of this new 89Zr-based complex. High stability in vivo, with low accumulation of free 89Zr in bones and kidneys, was measured. Furthermore, an activated ester functionalized version of AAZTHAG was synthesized to allow the conjugation with biomolecules such as antibodies. The bifunctional chelator was then conjugated to the human anti-HER2 monoclonal antibody Trastuzumab (Tz) as a proof of principle test of conjugation to biologically active molecules. The final 89Zr labeled compound was characterized via radio-HPLC and SDS-PAGE followed by autoradiography, and its stability in different solutions was assessed for at least 4 days.  相似文献   
108.
    
This perspective aims at celebrating the 100th anniversary of the discovery of the Passerini three component reaction. After being nearly neglected for many years, now this reaction has become quite popular, thanks to the achievements of the last 30 years, which have revealed several chances of exploitation in organic synthesis. Though not being comprehensive, this review means to show the various ways that have been used in order to expand the utility of the Passerini reaction. Post-MCR transformations to give heterocycles or peptidomimetics, variants through single component replacement, stereochemical issues, and applications in total syntheses will be especially covered.

This perspective aims at celebrating the 100th anniversary of the discovery of the Passerini three component reaction.  相似文献   
109.
We employed agarose gel preparative electrophoresis to separate gold nanoparticles based on size, shape, and charge. The separating technique was first demonstrated by size separation of 5 nm, 15 nm, and 20 nm spherical gold nanoclusters; and further evidenced through the purification of crude 15 +/- 2.7 nm nanoclusters to nanoclusters that were 15 +/- 0.4 nm. The ability to separate gold nanoparticles by shape was also shown by the purification of a mixture of gold spheres, plates, and long rods.  相似文献   
110.
Molecular self-assembly is an intrinsic property of proteins central to their biological functionality. One important industrially interesting property is the ability to control and switch on and off self-assembly using a variety of external chemical and physical triggers. Model peptides have been developed with significantly reduced chemical and structural complexity compared to biological proteins. These are ideal systems for exposing the fundamental principles that drive protein-like self-assembly, as well as for establishing in a quantitative manner their structure-function relationship. We investigate simple, short model peptides that adopt a purely β-strand conformation, align in an antiparallel manner and self-assemble in one dimension in solution into long β-sheet nanotapes and higher order aggregates with no other conformation (i.e., helices, turns or random coils) present in the aggregates. These micrometre-long nanostructures gel in solutions at concentrations as low as 0.2% v/v. Their gel-fluid transition has been previously shown to be controlled by pH, temperature, or by mixing with complementary peptides. Here we show the dramatic effect of another chemical trigger, that of physiological-like salt concentration, on the self-assembly, morphology and gelation of a series of systematically designed charged self-assembling tape-forming peptides, each 11 amino acid residues in length, in the pH range of 2-14. This study provides a detailed understanding of the self-assembly of this class of peptides in aqueous solutions of biologically relevant pH and ionic strength. This insight has led to the development of injectable self-assembling peptide lubricants as potential therapeutics for the treatment of early stage knee joint osteoarthritis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号