首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   3篇
化学   35篇
晶体学   1篇
力学   4篇
数学   11篇
物理学   2篇
  2020年   1篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   4篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  1978年   1篇
  1973年   3篇
  1971年   1篇
  1968年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
31.
Studying protein-protein interactions using peptide arrays   总被引:1,自引:0,他引:1  
Screening of arrays and libraries of compounds is well-established as a high-throughput method for detecting and analyzing interactions in both biological and chemical systems. Arrays and libraries can be composed from various types of molecules, ranging from small organic compounds to DNA, proteins and peptides. The applications of libraries for detecting and characterizing biological interactions are wide and diverse, including for example epitope mapping, carbohydrate arrays, enzyme binding and protein-protein interactions. Here, we will focus on the use of peptide arrays to study protein-protein interactions. Characterization of protein-protein interactions is crucial for understanding cell functionality. Using peptides, it is possible to map the precise binding sites in such complexes. Peptide array libraries usually contain partly overlapping peptides derived from the sequence of one protein from the complex of interest. The peptides are attached to a solid support using various techniques such as SPOT-synthesis and photolithography. Then, the array is incubated with the partner protein from the complex of interest. Finally, the detection of the protein-bound peptides is carried out by using immunodetection assays. Peptide array screening is semi-quantitative, and quantitative studies with selected peptides in solution are required to validate and complement the screening results. These studies can improve our fundamental understanding of cellular processes by characterizing amino acid patterns of protein-protein interactions, which may even develop into prediction algorithms. The binding peptides can then serve as a basis for the design of drugs that inhibit or activate the target protein-protein interactions. In the current review, we will introduce the recent work on this subject performed in our and in other laboratories. We will discuss the applications, advantages and disadvantages of using peptide arrays as a tool to study protein-protein interactions.  相似文献   
32.
Résumé Pour trouver des approximations d'un ordre élevé dans les problèmes de couche limite, l'auteur propose une méthode qui unifie le approches de Meksyn et Görtler. Les valeurs initiales, pour les approximations successives de Görtler, sont evaluées à l'aide de la methode de Meksyn. Toutes les valeurs initiales sont obtaneues par différentiation d'une seule équation. Les résultats obtenus sont au moins équivalent à ceux obtenus par la méthode de Hsu, avec considérablement moins de calculs.  相似文献   
33.
The determination of the absolute configuration of chiral molecules is at the heart of asymmetric synthesis. Here we probe the spectroscopic limits for chiral discrimination with NMR spectroscopy in chiral aligned media and with vibrational circular dichroism spectroscopy of the sixfold‐deuterated chiral neopentane. The study of this compound presents formidable challenges since its stereogenicity is only due to small mass differences. For this purpose, we selectively prepared both enantiomers of 2H6‐ 1 through a concise synthesis utilizing multifunctional intermediates. While NMR spectroscopy in chiral aligned media could be used to characterize the precursors to 2H6‐ 1 , the final assignment could only be accomplished with VCD spectroscopy, despite the fleetingly small dichroic properties of 1 . Both enantiomers were assigned by matching the VCD spectra with those computed with density functional theory.  相似文献   
34.
We addressed an unexplored application of the Suzuki-Miyaura protocol to the cross-coupling of 1,1-dichloro-1-alkenes with 9-alkyl-9-BBN. The use of bisphosphine ligands with a large P-Pd-P bite angle allowed us to synthesize Z-chlorinated internal alkenes in good yields resulting from a selective monocoupling process, a recurrent challenge with 1,1-dichloro-1-alkenes. Moreover, these monochlorinated olefins could be further transformed providing stereospecifically trisubstituted olefins.  相似文献   
35.
Moor N  Klipcan L  Safro MG 《Chemistry & biology》2011,18(10):1221-1229
Aminoacyl-tRNA synthetases exert control over the accuracy of translation by selective pairing the correct amino acids with their cognate tRNAs, and proofreading the misacylated products. Here we show that three existing, structurally different phenylalanyl-tRNA synthetases-human mitochondrial (HsmtPheRS), human cytoplasmic (HsctPheRS), and eubacterial from Thermus thermophilus (TtPheRS), catalyze mischarging of tRNA(Phe) with an oxidized analog of tyrosine-L-dopa. The lowest level of L-dopa discrimination over the cognate amino acid, exhibited by HsmtPheRS, is comparable to that of tyrosyl-tRNA synthetase. HsmtPheRS and TtPheRS complexes with L-dopa revealed in the active sites an electron density shaping this ligand. HsctPheRS and TtPheRS possessing editing activity are capable of hydrolyzing the exogenous L-dopa-tRNA(Phe) as efficiently as Tyr-tRNA(Phe). However, editing activity of PheRS does not guarantee reduction of the aminoacylation error rate to escape misincorporation of L-dopa into polypeptide chains.  相似文献   
36.
37.
38.
The effect of compaction conditions on UHMWPE fibers is examined by microbeam X‐ray diffraction (WAXS) and scanning electron microscopy (SEM). The morphological observations indicate that melting occurs during compaction both on the surface of the fiber as well as in its internal regions. In addition, the recrystallized phase is nucleated on the fiber surface, possibly epitaxially. The recrystallized phase that originates from the internal regions of the fiber retains the initial highly oriented structure. WAXS microbeam measurements do not show any significant core‐shell structure in compacted single fibers. Considering the overall characteristics of the melting process during compaction, we can conclude that the hexagonal phase that appears upon heating of the fibers under moderate pressure is responsible for good adhesion of the fibers to each other, even more significantly than surface melting, especially because of its ability to retain the high orientation of the chains in the fibers. This information is relevant for understanding the formation and microstructure of the matrix component in the self‐reinforced composites fabricated by compaction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1535–1541, 2007  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号