首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   7篇
化学   152篇
晶体学   2篇
力学   11篇
数学   10篇
物理学   86篇
  2022年   2篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   15篇
  2012年   5篇
  2011年   12篇
  2010年   12篇
  2009年   3篇
  2008年   26篇
  2007年   27篇
  2006年   14篇
  2005年   11篇
  2004年   18篇
  2003年   13篇
  2002年   9篇
  2001年   7篇
  2000年   6篇
  1999年   5篇
  1998年   2篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   7篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1974年   3篇
  1972年   1篇
  1969年   2篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1906年   2篇
排序方式: 共有261条查询结果,搜索用时 31 毫秒
71.
The quenching of the luminescence of [Ru(phen)(2)dppz](2+) by structural homologue [Ru(phendione)(2)dppz](2+), when both complexes are bound to DNA, has been studied for all four combinations of Delta and Lambda enantiomers. Flow linear dichroism spectroscopy (LD) indicates similar binding geometries for all the four compounds, with the dppz ligand fully intercalated between the DNA base pairs. A difference in the LD spectrum observed for the lowest-energy MLCT transition suggests that a transition, potentially related to the final localization of the excited electron to the dppz ligand in [Ru(phen)(2)dppz](2+), is overlaid by an orthogonally polarized transition in [Ru(phendione)(2)dppz](2+). This would be consistent with a low-lying LUMO of the phendione moiety of [Ru(phendione)(2)dppz](2+) that can accept the excited electron from [Ru(phen)(2)dppz](2+), thereby quenching the emission of the latter. The lifetime of excited Delta-[Ru(phen)(2)dppz](2+) is decreased moderately, from 664 to 427 ns, when bound simultaneously with the phendione complex to DNA. The 108 ns lifetime of opposite enantiomer, Lambda-[Ru(phen)(2)dppz](2+), is only shortened to 94 ns. These results are consistent with an average rate constant for electron transfer of approximately 1.10(6) s(-1) between the phenanthroline- and phendione-ruthenium complexes. At binding ratios close to saturation of DNA, the total emission of the two enantiomers is lowered equally much, but for the Lambda enantiomer, this is not paralleled by a decrease in luminescence lifetime. A binding isotherm simulation based on a generalized McGhee-von Hippel approach shows that the Delta enantiomer binds approximately 3 times stronger to DNA both for [Ru(phendione)(2)dppz](2+) and [Ru(phen)(2)dppz](2+). This explains the similar decrease in total emission, without the parallel decrease in lifetime for the Lambda enantiomer. The simulation also does not indicate any significant binding cooperativity, in contrast to the case when Delta-[Rh(phi)(2)bipy](3+) is used as quencher. The very slow electron transfer from [Ru(phen)(2)dppz](2+) to [Ru(phendione)(2)dppz](2+), compared to the case when [Rh(phi)(2)phen](3+) is the acceptor, can be explained by a much smaller driving free-energy difference.  相似文献   
72.
73.
Preparation and Crystal Structures of Dicyanamido(triphenylphosphane)gold(I) and Nitrosodicyanomethanido(triphenylphosphane)gold(I) The coordination compounds [(Ph3P)Au{N(CN)2}] ( 1 ) and [(Ph3P)Au{ONC(CN)2}] ( 2 ) are obtained by the reaction of [Au(PPh3)]NO3 with Na[N(CN)2] or K[ONC(CN)2] in CH2Cl2. The compounds are characterized by IR spectroscopy and by crystal structure determination. 1 crystallizes triclinic in the space group P 1 with a = 930.16(4), b = 1011.89(13), c = 1118.35(16) pm, α = 115.327(10), β = 90.899(8), γ = 103.394(8)°, Z = 2. 2 crystallizes monoclinic in the space group P21/n with a = 832.59(10), b = 1139.30(16), c = 2078.9(4) pm, β = 99.84(2)°, Z = 4. The crystal structures of both compounds are built up by pairs of antiparallel oriented molecules with linear coordinated gold atoms and weak intermolecular Au–N‐interactions.  相似文献   
74.
75.
We extract a relatively precise value for the decay constant of the meson by measuring B(D+ --> mu+nu) = (4.40 +/-0.66(+0.09)(-0.12) x 10(-4) using 281 pb(-1) of data taken on phi(3770) the resonance with the CLEO-c detector. We find fD+ = (222.6 +/- 16.7(+2.8)(-3.4)) MeV, and compare with current theoretical calculations. We also set a 90% confidence upper limit on B(D+e+nu)< 2.4 x 10(-5) which constrains new physics models.  相似文献   
76.
The semirigid binuclear ruthenium complex Delta,Delta-[mu-(11,11'-bidppz)(phen)(4)Ru(2)](4+) has been shown to rearrange slowly from an initial groove-bound nonluminescent state to a final intercalated emissive state by threading one of its bulky Ru(phen)(2) moieties through the DNA base stack. When this complex binds to poly[d(A-T)(2)], a further increase in emission from the complex is observed after completion of the intercalation, assigned to reorganization of the intercalated complex. We here report a study of the threading process in poly[d(A-T)(2)], in which the minor groove binding dye DAPI is used as an energy transfer probe molecule to assess the distribution of ruthenium complex during and also after the actual threading phase. The emission from DAPI is found to change with the same rate as the emission from the ruthenium complex, and furthermore, DAPI does not disturb the binding kinetics of the latter, justifying it as a good probe of both the threading and the reorganization processes. We conclude from the change in the emission from both DAPI and the ruthenium complex with time that DAPI-ruthenium interactions are most pronounced during the process of threading of the complex, suggesting that the complexes are initially threaded slightly anticooperatively and thereafter redistribute along the DNA to reach their thermodynamically most favorable distribution. The final distribution is characterized by a small but significant binding cooperativity, probably as a result of hydrophobic interactions between the complex ions despite their tetravalent positive charges. The mechanism of "shuffling" the complex along the DNA chain is discussed, i.e., whether the ruthenium complex remains threaded (requiring sequential base-pair openings) or if unthreading followed by lateral diffusion within the ionic atmosphere of the DNA and rethreading occurs.  相似文献   
77.
78.
79.
The interactions between the stereoisomers of the chiral bis-intercalator [mu-C4(cpdppz)(2)-(phen)(4)Ru(2)](4+) and DNA reveal interesting dynamic discrimination properties. The two enantiomers Delta-Delta and Lambda-Lambda both form very strong complexes with calf thymus DNA with similar thermodynamic affinities. By contrast, they display considerable variations in their binding kinetics. The Delta-Delta enantiomer has higher affinity for calf thymus DNA than for [poly(dA-dT)](2), and the association kinetics of the dimer to DNA, as well as to polynucleotides, requires a multiexponential fitting function. The dissociation reaction, on the other hand, could be described by a single exponential for [poly(dA-dT)](2), whereas two exponentials were required for mixed-sequence DNA. To understand the key mechanistic steps of the reaction, the kinetics was studied at varied salt concentration for different choices of DNA and chirality of the threading complex. The enantiomers were found to have markedly different dissociation rates, the Lambda-Lambda enantiomer dissociating about an order of magnitude faster than the Delta-Delta enantiomer. Also, the salt dependence of the dissociation rate constants differed between the enantiomers, being stronger for the Lambda-Lambda enantiomer than for the Delta-Delta enantiomer. Since the dissociation reaction requires unthreading of bulky parts of the bis-intercalator through the DNA helix, a considerable conformational change of the DNA must be involved, possibly defining the rate-limiting step.  相似文献   
80.
The electrophoretic mobility behavior of well-characterized polystyrene latex particles, carrying one type of surface functional endgroups, has been studied as a function of pH. At low pH, the interaction of protons with the functional endgroups increased in the order: Hydroxyl > carboxyl > sulfate; at high pH the order of interaction was reversed; and at intermediate pH no interactions were observed. The particles of the polystyrene latexes in their different forms at the intermediate pH range, dispersed in deionized water, all exhibited the same mobility irrespective of the functional endgroup. The origin of charge in these systems is explained as being the result of either the preferential adsorption of hydroxyl ions or an electron - injection mechanism due to the overlap of local intrinsic molecular - ion states in polystyrene and water. At low concentrations of functional endgroups, the surface properties of the polystyrene latexes are largely dependent upon the hydrophobic nature of the surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号