首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2122篇
  免费   138篇
  国内免费   134篇
化学   1606篇
晶体学   18篇
力学   60篇
综合类   15篇
数学   236篇
物理学   459篇
  2024年   11篇
  2023年   41篇
  2022年   173篇
  2021年   146篇
  2020年   103篇
  2019年   100篇
  2018年   85篇
  2017年   71篇
  2016年   151篇
  2015年   128篇
  2014年   133篇
  2013年   134篇
  2012年   186篇
  2011年   169篇
  2010年   99篇
  2009年   102篇
  2008年   99篇
  2007年   92篇
  2006年   83篇
  2005年   54篇
  2004年   40篇
  2003年   22篇
  2002年   26篇
  2001年   14篇
  2000年   13篇
  1999年   10篇
  1998年   5篇
  1997年   7篇
  1996年   8篇
  1995年   11篇
  1994年   10篇
  1993年   7篇
  1992年   5篇
  1991年   5篇
  1990年   8篇
  1989年   5篇
  1988年   5篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1981年   6篇
  1980年   2篇
  1979年   1篇
  1976年   2篇
  1975年   1篇
  1968年   1篇
  1966年   1篇
  1965年   2篇
  1964年   3篇
排序方式: 共有2394条查询结果,搜索用时 15 毫秒
91.
Urea can improve the solubility and stability of cellulose in aqueous alkali solution, while its role has not come to a conclusion. To reveal the role of urea in solution, NMR was introduced to investigate the interaction between urea and the other components in solution. Results from chemical shifts and longitudinal relaxation times show that: (1) urea has no strong direct interaction with cellulose as well as NaOH; (2) urea does not have much influence on the structural dynamics of water. Urea may play its role through van der Waals force. It may accumulate on the cellulose hydrophobic region to prevent dissolved cellulose molecules from re-gathering. The driving force for the self-assembly of cellulose and urea molecules might be hydrophobic interaction. In the process of cellulose dissolution, OH? breaks the hydrogen bonds, Na+ hydrations stabilize the hydrophilic hydroxyl groups and urea stabilizes the hydrophobic part of cellulose.  相似文献   
92.
In this article, solid-state 13C CP/MAS NMR combined with extended Hückel charges was applied to investigate the interaction between urea and cellulose in the NaOH/urea aqueous solvent system. Direct experimental evidence was provided to support the interaction between urea and cellulose. The solid-state 13C CP/MAS NMR results revealed that complicated complexes are formed by urea, NaOH and cellulose in the solution. Excess urea exists in a free state, which explains why 7 wt% NaOH/12 wt% urea/81 wt% H2O is the optimal ratio selection to dissolve cellulose. Based on the correlation in which the computed extended Hückel charge on carbon of urea is approximately inversely proportional to its 13C chemical shift, a possible interaction model of cellulose, NaOH and urea was proposed. Interactions exist between any two of urea, NaOH and cellulose, which results in the cellulose chain being surrounded by NaOH and urea molecules. NaOH and urea may be in the same surface layer of cellulose chains.  相似文献   
93.
Iron is the cheapest and one of the most abundant transition metals. Natural [FeFe]‐hydrogenases exhibit remarkably high activity in hydrogen evolution, but they suffer from high oxygen sensitivity and difficulty in scale‐up. Herein, an FeP nanowire array was developed on Ti plate (FeP NA/Ti) from its β‐FeOOH NA/Ti precursor through a low‐temperature phosphidation reaction. When applied as self‐supported 3D hydrogen evolution cathode, the FeP NA/Ti electrode shows exceptionally high catalytic activity and good durability, and it only requires overpotentials of 55 and 127 mV to afford current densities of 10 and 100 mA cm2, respectively. The excellent electrocatalytic performance is promising for applications as non‐noble‐metal HER catalyst with a high performance–price ratio in electrochemical water splitting for large‐scale hydrogen fuel production.  相似文献   
94.
The need for miniaturization and weight reduction of GPS patch antennas has prompted the search for new microwave dielectric materials. In this study, a sol–gel method was used to prepare Zn(1?x)MgxAl2O4 thin films and fabricate GPS patch antennas at a low annealing temperature (700 °C). X-ray diffraction (XRD) patterns, field emission scanning electron microscopy images, Fourier transform infrared spectra, and optical band gap analyses confirmed the nanostructure of (Mg/Zn)Al2O4. The XRD patterns displayed the characteristic peaks of (Mg/Zn)Al2O4 with a face-centered cubic structure. Mg addition decreased the crystallite size, surface morphology, and lattice parameters of the resultant films, evidently affecting their density and dielectric constant (? r ). Based on the material investigated and microwave antenna theory, GPS patch antennas were fabricated using Zn(1?x)MgxAl2O4 and then studied using a PNA series network analyzer. The fabricated patch antennas with different ? r ceramics decreased in size from 12.5 to 10.8 cm2. The patch antennas resonated at a frequency of 1.570 GHz and provided a return loss bandwidth between ?16.6 and ?20.0 dB; their bandwidth also improved from 90 to 255 MHz. The GPS patch antenna fabricated from Zn0.70Mg0.30Al2O4 showed an excellent combination of return loss (?20.0 dB), small size (10.8 cm2), and wide bandwidth (255 MHz). Therefore, addition of Mg improves antenna performance and decreases the dimensions of the device.  相似文献   
95.
Organic semiconductors (OSCs) materials are currently under intense investigation because of their potential applications such as organic field-effect transistors, organic photovoltaic devices, and organic light-emitting diodes. Inspired by the selenization strategy can promote anisotropic charge carrier migration, and selenium-containing compounds have been proved to be promising materials as OSCs both for hole and electron transfer. Herein, we now explore the anisotropic transport properties of the series of selenium-containing compounds. For the compound containing Se Se bond, the Se Se bond will break when attaching an electron, thus those compounds cannot act as n-type OSCs. About the different isomer compounds with conjugated structure, the charge transfer will be affected by the stacking of the conjugated structures. The analysis of chemical structure and charge transfer property indicates that Se-containing materials are promising high-performance OSCs and might be used as p-type, n-type, or ambipolar OSCs. Furthermore, the symmetry of the selenium-containing OSCs will affect the type of OSCs. In addition, there is no direct relationship between the R groups with their performance, whether it or not as p-type OSCs or n-types. This work demonstrates the relationship between the optoelectronic function and structure of selenium-containing OSCs materials and hence paves the way to design and improve optoelectronic function of OSCs materials.  相似文献   
96.
This article outlines the magnetic features of a new six–coordinate high-spin cobalt(II) complex cis-[CoII(tmphen)2(NCS)2] ( 1 ) achieved via the reactions of cobalt(II) thiocyanate with 3,4,7,8-tetramethyl-1,10-phenanthroline. The complex 1 was thoroughly characterized by different analytical and spectroscopic techniques and further confirmed by single X-ray crystal diffraction pattern. Complex 1 is a neutral molecule and adopt highly distorted six-coordinate CoN6 octahedral coordination sphere surrounded by two thiocyanate N atoms in cis locations and the equatorial plane is occupied by two imine N atoms from the two tmphen ligand while the remaining two imine N atoms reside in the axial positions. Magnetic susceptibility data of complex 1 revealed that the χΜT values decrease significantly to a value of 1.49 cm3 · K · mol–1 at 2.0 K on decreasing temperatures below 100 K, mainly ascribed to the significant spin–orbit coupling (SOC) of six-coordinate CoII ions. Furthermore, a field-dependence measurement was performed at 2 K, which shows a positive curvature up to 27 kOe, while it becomes linear up to 2.01 B, which authenticated the fact that only the lowest Kramers doublet of ground state is appreciably populated.  相似文献   
97.
近年来,对于铜精矿中有害杂质元素的要求越来越严格,其中杂质元素砷的测定是进出口铜精矿的常规检定项目之一[1-2]。铜矿样中砷的含量直接影响到电解铜的质量,因此准确、快速测定铜矿样中砷的含量就显得特别重要[3]。  相似文献   
98.
In this study the redox activity of human myocardium‐derived mesenchymal stem cells (hmMSC) were investigated by redox‐competition (RC‐SECM) and generation‐collection (GC‐SECM) modes of scanning electrochemical microscopy (SECM), using 2‐methylnaphthalene‐1,4‐dione (menadione, MD) as a redox mediator. The redox activity of human healthy and dilated hmMSCs was evaluated by measuring reduction of MD. Measurements were performed by approaching and retracting the UME from the surface of growing hmMSC cells. The current study shows that the RC‐SECM mode can be applied to investigate integrity of cell membranes, whereas the most promising results were observed by using the GC‐SECM mode and applying the Hill's equation for the calculation/fitting of dependencies of electrical current vs menadione concentration. The calculated apparent Michaelis constant (KM) for the production of menadiol (MDH2) in the pathological hmMSC cells was 14.4 folds higher compared to that of the healthy hmMSC revealing the lover redox activity of pathological cells. Moreover, the calculated Hill's coefficient n shows a negative cooperative binding between MD and healthy hmMSC and positive cooperative binding between MD and pathological hmMSC. It means that healthy hmMSC is of lower affinity to MD, which is also related to the better membrane integrity of healthy cells. Data of this study demonstrate that SECM can be applied to investigate intracellular redox and membrane changes ongoing in human dilated myocardium‐derived hmMSC in order to improve their functioning and further regenerative potential.  相似文献   
99.
The use of biopolymers has gained priority in tissue engineering and biotechnology, both as dressing material and for enhancing treatment efficiency. There is a demand for new biopolymers designed with protease inhibitors and antimicrobials. LL‐37 is an important antimicrobial peptide in human skin and exhibits a broad spectrum of antimicrobial activity against bacteria, fungi, and viral pathogens. Using lignin which is an abundant carbohydrate polymer in nature and a polyacrylic acid, we prepared a lignin/caprolactone biodegradable film by plastifying caprolactone and polyacyrlic acid. Lignin/caprolactone biodegradable film was activated with CDI and then immobilized LL‐37 peptide. The structure was elucidated in terms of its functional groups by attenuated total reflectance‐fourier transform infrared spectroscopy (ATR‐FTIR), and the morphology of the lignin/caprolactone biodegradable film was characterized by scanning electron microscopy (SEM) before and after the immobilization process. The amount of LL‐37 immobilized was determined by ELISA method. It was found that 97% of LL‐37 peptide was successfully immobilized onto the lignin/caprolactone biodegradable film. Antimicrobial activity was determined in the lignin/caprolactone biodegradable film samples by quantitative antimicrobial activity method. According to the results, LL‐37 immobilized lignin/caprolactone biodegradable film samples were effective on test organisms; Gram‐positive Staphylococcus aureus and Gram‐negative Escherichia coli. In bio‐compatibility assays, the ability to support tissue cell integration was detected by using 3 T3 mouse fibroblasts. Samples were examined under transverse microscope, non‐immobilized sample showed a huge cellular death, whereas LL‐37 immobilized lignin/caprolactone biodegradable film had identical cellular growth with the control group. This dual functional lignin/caprolactone biodegradable film with enhanced antibacterial properties and increased tissue cell compatibility may be used to design new materials for various types of biological applications.  相似文献   
100.
While direct nitrene insertions into C?H bonds have become an important tool for building C?N bonds in modern organic chemistry, the generation of nitrene intermediates always requires transition metals, high temperatures, ultraviolet or laser light. We report a mild synthesis of carbazoles and related building blocks through a visible light‐induced intramolecular C?H amination reaction. A striking advantage of this new method is the use of more reactive aryl sulfilimines instead of the corresponding hazardous azides. Different catalysts and divergent light sources were tested. The reaction scope is broad and the product yield is generally high. An efficient gram‐scale synthesis of Clausine C demonstrates the applicability and scalability of this new method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号