首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2660篇
  免费   288篇
  国内免费   178篇
化学   2004篇
晶体学   26篇
力学   120篇
综合类   2篇
数学   235篇
物理学   739篇
  2024年   14篇
  2023年   98篇
  2022年   194篇
  2021年   156篇
  2020年   164篇
  2019年   173篇
  2018年   161篇
  2017年   116篇
  2016年   177篇
  2015年   177篇
  2014年   190篇
  2013年   238篇
  2012年   265篇
  2011年   251篇
  2010年   162篇
  2009年   125篇
  2008年   132篇
  2007年   108篇
  2006年   65篇
  2005年   33篇
  2004年   21篇
  2003年   12篇
  2002年   18篇
  2001年   6篇
  2000年   11篇
  1999年   6篇
  1998年   8篇
  1997年   5篇
  1996年   7篇
  1995年   5篇
  1994年   3篇
  1993年   5篇
  1991年   6篇
  1990年   6篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
排序方式: 共有3126条查询结果,搜索用时 15 毫秒
101.
Single-atom catalysts (SACs) have emerged as crucial players in catalysis research, prompting extensive investigation and application. The precise control of metal atom nucleation and growth has garnered significant attention. In this study, we present a straightforward approach for preparing SACs utilizing a photocatalytic radical control strategy. Notably, we demonstrate for the first time that radicals generated during the photochemical process effectively hinder the aggregation of individual atoms. By leveraging the cooperative anchoring of nitrogen atoms and crystal lattice oxygen on the support, we successfully stabilize the single atom. Our Pd1/TiO2 catalysts exhibit remarkable catalytic activity and stability in the Suzuki–Miyaura cross-coupling reaction, which was 43 times higher than Pd/C. Furthermore, we successfully depose Pd atoms onto various substrates, including TiO2, CeO2, and WO3. The photocatalytic radical control strategy can be extended to other single-atom catalysts, such as Ir, Pt, Rh, and Ru, underscoring its broad applicability.  相似文献   
102.
A novel class of ZnSalens (ZnL(1-10)) with lipophilic and cationic conjugates as optical probes in single and two-photon fluorescence microscopy images of living cells were prepared, which exhibited chemo- and photostability, low cytotoxicity and high subcellular selectivity.  相似文献   
103.
Rare gas containing cations with general formula [Rg, B, 2F](+) have been investigated theoretically by second-order Mo?ller-Plesset perturbation, coupled cluster, and complete active space self-consistent field levels of theory with correlation-consistent basis sets. Totally two types of minima, i.e., boron centered C(2) (v) symmetried RgBF(2) (+) (Rg = Ar, Kr, and Xe) which can be viewed as loss of F(-) from FRgBF(2) and linear FRgBF(+) (Rg = Kr and Xe) are obtained at the CCSD(T)∕aug-cc-pVTZ∕SDD and CASSCF(10,8)∕aug-cc-pVTZ∕SDD levels, respectively. It is shown that the RgBF(2) (+) are global minima followed by FRgBF(+) at 170.9 and 142.2 kcal∕mol on the singlet potential-energy surfaces of [Rg, B, 2F](+) (Rg = Kr and Xe) at the CASPT2(10,8) ∕aug-cc-pVTZ∕SDD∕∕CASSCF(10,8)∕aug-cc-pVTZ∕SDD, respectively. The interconversion barrier heights between RgBF(2) (+) and FRgBF(+) (Rg = Kr and Xe) are at least 39 kcal∕mol. In addition, no dissociation transition state associated with RgBF(2) (+) and FRgBF(+) can be found. This suggests that RgBF(2) (+) (Rg = Ar, Kr, and Xe) can exist as both thermodynamically and kinetically stable species, while linear FRgBF(+) (Rg = Kr and Xe) can exist as metastable species compared with the lowest dissociation limit energies just like isoelectronic linear FRgBO and FRgBN(-). From natural bond orbital and atoms-in-molecules calculations, it is found that the positive charge is mainly located on Rg and boron atoms for both types of minima, the Rg-B bonds of ArBF(2) (+), KrBF(2) (+), and XeBF(2) (+) are mostly electrostatic, thus can be viewed as ion-induced dipole interaction; while that of linear FKrBF(+) and FXeBF(+) are covalent in nature. The previous experimental observation of ArBF(2) (+) by Pepi et al. [J. Phys. Chem. B. 110, 4492 (2006)] should correspond to C(2) (v) minimum. The presently predicted spectroscopies of KrBF(2) (+), XeBF(2) (+), FKrBF(+), and FXeBF(+) should be helpful for their experimental identification in the future.  相似文献   
104.
Red phosphorus is a promising photocatalyst with wide visible-light absorption up to 700 nm, but the fast charge recombination limits its photocatalytic hydrogen evolution reaction (HER) activity. Now, [001]-oriented Hittorf's phosphorus (HP) nanorods were successfully grown on polymeric carbon nitride (PCN) by a chemical vapor deposition strategy. Compared with the bare PCN and HP, the optimized PCN@HP hybrid exhibited a significantly enhanced photocatalytic activity, with HER rates reaching 33.2 and 17.5 μmol h−1 from pure water under simulated solar light and visible light irradiation, respectively. It was theoretically and experimentally indicated that the strong electronic coupling between PCN and [001]-oriented HP nanorods gave rise to the enhanced visible light absorption and the greatly accelerated photoinduced electron–hole separation and transfer, which benefited the photocatalytic HER performance.  相似文献   
105.
Solar‐driven interfacial water evaporation yield is severely limited by the low efficiency of solar thermal energy. Herein, the injection control technique (ICT) achieves a capillary water state in rGO foam and effectively adjusts the water motion mode therein. Forming an appropriate amount of capillary water in the 3D graphene foam can greatly increase the vapor escape channel, by ensuring that the micrometer‐sized pore channels do not become completely blocked by water and by exposing as much evaporation area as possible while preventing solar heat from being used to heat excess water. The rate of solar steam generation can reach up to 2.40 kg m?2 h?1 under solar illumination of 1 kW m?2, among the best values reported. In addition, solar thermal efficiency approaching 100 % is achieved. This work enhances solar water‐evaporation performance and promotes the application of solar‐driven evaporation systems made of carbon‐based materials.  相似文献   
106.
Isomerism of atomically precise noble metal nanoclusters provides an excellent platform to investigate the structure–property correlations of metal nanomaterials. In this study, we performed density functional theory (DFT) and time‐dependent (TD‐DFT) calculations on two Au21(SR)15 nanoclusters, one with a hexagonal closed packed core (denoted as Au21 hcp ), and the other one with a face‐centered cubic core (denoted as Au21 fcc ). The structural and electronic analysis on the typical Au–Au and Au–S bond distances, bond orders, composition of the frontier orbitals and the origin of optical absorptions shed light on the inherent correlations between these two clusters.  相似文献   
107.
Fluorescent nanomaterials such as single‐walled carbon nanotubes (SWCNTs) have many advantages in terms of their photophysics, but it is difficult to target them to specific locations in living systems. In contrast, the green fluorescent protein (GFP) has been genetically fused to proteins in many cells and organisms. Therefore, GFP can be seen not only as a fluorophore but as a universal target/handle. Here, we report the conjugation of GFP‐binding nanobodies to DNA‐wrapped SWCNTs. This approach combines the targeting capabilities of GFP‐binding nanobodies and the nonbleaching near‐infrared fluorescence (850–1700 nm) of SWCNTs. These conjugates allow us to track single Kinesin‐5‐GFP motor proteins in developing embryos of Drosophila melanogaster. Additionally, they are sensitive to the neurotransmitter dopamine and can be used for targeted sensing of dopamine in the nm regime.  相似文献   
108.
The crystallographic defects inevitably incur during the solution processed organic‐inorganic hybrid perovskite film, especially at surface and the grain boundaries (GBs) of perovskite film, which can further result in the reduced cell performance and stability of perovskite solar cells (PSCs). Here, a simple defect passivation method was employed by treating perovskite precursor film with a hydrophobic tetra‐ammonium zinc phthalocyanine (ZnPc). The results demonstrated that a 2D‐3D graded perovskite interface with a capping layer of 2D (ZnPc)0.5MAn ? 1PbnI3n + 1 perovskite together with 3D MAPbI3 perovskite was successfully constructed on the top of 3D perovskite layer. This situation realized the efficient GBs passivation, thus reducing the defects in GBs. As expected, the corresponding PSCs with modified perovskite revealed an improved cell performance. The best efficiency reached 19.6%. Especially, the significantly enhanced long‐term stability of the responding PSCs against humidity and heating was remarkably achieved. Such a strategy in this work affords an efficient method to improve the stability of PSCs and thus probably brings the PSCs closer to practical commercialization.  相似文献   
109.
Mas‐related G protein‐coupled receptor X2 was a mast cell–specific receptor mediating anaphylactoid reactions by activating mast cells degranulation, and it was also identified as a target for modulating mast cell–mediated anaphylactoid and inflammatory diseases. The anti‐anaphylactoid drugs used clinically disturb the partial effect of partial mediators released by mast cells. The small molecule of Mas‐related G protein‐coupled receptor X2 specific antagonists may provide therapeutic action for the anaphylactoid and inflammatory diseases in the early stage. In this study, the Mas‐related G protein‐coupled receptor X2 high expression cell membrane chromatography was coupled online with liquid chromatography and mass spectrometry and successfully used to screen anti‐anaphylactoid components from Magnolia biondii Pamp. Fargesin and pinoresinol dimethyl ether were identified as potential anti‐anaphylactoid components. Bioactivity of these two components were investigated by β hexosaminidase and histamine release assays on mast cells, and it was found that these two components could inhibit β hexosaminidase and histamine release in a concentration‐dependent manner. This Mas‐related G protein‐coupled receptor X2 high expression cell membrane chromatography coupled online with liquid chromatography and mass spectrometry system could be applied for screening potential anti‐anaphylactoid components from natural medicinal herbs. This study also provided a powerful system for drug discovery in natural medicinal herbs.  相似文献   
110.
As the most successful commercialized thermoplastic vulcanizates (TPVs), polypropylene (PP)/ethylene propylene rubber (EPDM) TPVs exhibit poor oil resistance. In this work, we prepared PP/EPDM/butadiene acrylonitrile rubber (NBR) ternary TPVs with good oil resistance using core‐shell dynamic vulcanization. According to the theoretical analysis of the spreading coefficient and the transmission electron microscopy results, the rubber phases exhibited a special core‐shell structure, in which the cross‐linkedNBR‐core was encapsulated by the EPDM‐shell. The core‐shell structure effectively improved the interfacial compatibility between PP and NBR phase as the EPDM‐shell could avoid the direct contact of them, thus improving the mechanical properties of the TPVs. For example, the PP/EPDM/NBR (40/30/30) ternary TPV showed enhanced tensile strength of 12.57 MPa, compared with 10.71 MPa of PP/EPDM (40/60) TPV and 11.11 MPa of PP/NBR (40/60) TPV, respectively. Moreover, the oil resistance of the TPVs was also improved. Compared with PP/EPDM TPV, the change rates in mass, volume, tensile strength and elongation at break of PP/EPDM/NBR TPV after oil immersion decreased by 42.18%, 48.69%, 52.68% and 28.77%, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号