首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21622篇
  免费   3699篇
  国内免费   2538篇
化学   15940篇
晶体学   281篇
力学   1171篇
综合类   145篇
数学   2304篇
物理学   8018篇
  2024年   85篇
  2023年   482篇
  2022年   831篇
  2021年   805篇
  2020年   884篇
  2019年   927篇
  2018年   754篇
  2017年   736篇
  2016年   1062篇
  2015年   1065篇
  2014年   1299篇
  2013年   1671篇
  2012年   1996篇
  2011年   2157篇
  2010年   1425篇
  2009年   1401篇
  2008年   1400篇
  2007年   1359篇
  2006年   1089篇
  2005年   956篇
  2004年   763篇
  2003年   616篇
  2002年   562篇
  2001年   458篇
  2000年   417篇
  1999年   363篇
  1998年   305篇
  1997年   255篇
  1996年   265篇
  1995年   214篇
  1994年   212篇
  1993年   165篇
  1992年   173篇
  1991年   130篇
  1990年   113篇
  1989年   104篇
  1988年   62篇
  1987年   53篇
  1986年   50篇
  1985年   51篇
  1984年   34篇
  1983年   19篇
  1982年   11篇
  1981年   12篇
  1980年   7篇
  1979年   11篇
  1977年   6篇
  1976年   8篇
  1975年   6篇
  1957年   6篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
991.
For the synthesis of single-walled carbon nanotubes (SWCNTs) from CH4 over a Fe/MgO catalyst, we proposed a coupled Downer-turbulent fluidized-bed (TFB) reactor to enhance the selectivity and yield (or production rate) of SWCNTs. By controlling a very short catalyst residence time (1–3 s) in the Downer, only part of Fe oxides can be reduced to form Fe nano particles (NPs) available for the growth of SWCNTs. The percentage of unreduced Fe oxides increased and the yield of SWCNTs decreased accordingly with the increase of catalyst feeding rate in Downer. SWCNTs were preferentially grown on the catalyst surface and inhibited the sintering of the Fe crystallites which would be formed thereafter in the downstream TFB, evidenced by TEM, Raman and TGA. The coupled Downer-turbulent fluidized-bed reactor technology allowed higher selectivity and higher production rate of SWCNTs as compared to TFB alone.  相似文献   
992.
A novel strategy for selective collection and detection of breast cancer cells (MCF-7) based on aptamer–cell interaction was developed. Mucin 1 protein (MUC1) aptamer (Apt1) was covalently conjugated to magnetic beads to capture MCF-7 cell through affinity interaction between Apt1 and MUC1 protein that overexpressed on the surface of MCF-7 cells. Meanwhile, a nano-bio-probe was constructed by coupling of nucleolin aptamer AS1411 (Apt2) to CdTe quantum dots (QDs) which were homogeneously coated on the surfaces of monodispersed silica nanoparticles (SiO2 NPs). The nano-bio-probe displayed similar optical and electrochemical performances to free CdTe QDs, and remained high affinity to nucleolin overexpressed cells through the interaction between AS1411 and nucleolin protein. Photoluminescence (PL) and square-wave voltammetric (SWV) assays were used to quantitatively detect MCF-7 cells. Improved selectivity was obtained by using these two aptamers together as recognition elements simultaneously, compared to using any single aptamer. Based on the signal amplification of QDs coated silica nanoparticles (QDs/SiO2), the detection sensitivity was enhanced and a detection limit of 201 and 85 cells mL−1 by PL and SWV method were achieved, respectively. The proposed strategy could be extended to detect other cells, and showed potential applications in cell imaging and drug delivery.  相似文献   
993.
Isotope labeling liquid chromatography–mass spectrometry (LC–MS) is a major analytical platform for quantitative proteome analysis. Incorporation of isotopes used to distinguish samples plays a critical role in the success of this strategy. In this work, we optimized and automated a chemical derivatization protocol (dimethylation after guanidination, 2MEGA) to increase the labeling reproducibility and reduce human intervention. We also evaluated the reagent compatibility of this protocol to handle biological samples in different types of buffers and surfactants. A commercially available liquid handler was used for reagent dispensation to minimize analyst intervention and at least twenty protein digest samples could be prepared in a single run. Different front-end sample preparation methods for protein solubilization (SDS, urea, Rapigest™, and ProteaseMAX™) and two commercially available cell lysis buffers were evaluated for compatibility with the automated protocol. It was found that better than 94% desired labeling could be obtained in all conditions studied except urea, where the rate was reduced to about 92% due to carbamylation on the peptide amines. This work illustrates the automated 2MEGA labeling process can be used to handle a wide range of protein samples containing various reagents that are often encountered in protein sample preparation for quantitative proteome analysis.  相似文献   
994.
The fabrication of a localized surface plasmon resonance nanosensor in a chip based format that utilizes Au nanorods (GNRs) as the optical transducer were systematically studied. (3-mercaptopropyl)trimethoxysilane (MPTMS) modified glass substrate offers GNR deposition with maximal sensitivity to local refractive index changes, which subsequently results in better optical recognition of receptor–analyte binding. Kinetics governing the mass transport and chemisorption of nanorods from bulk to solid surface can be dynamically controlled in a predictable fashion. We demonstrate that slight aggregation induced by a low ionic strength (5 mM NaCl) can facilitate the nanorod assembly to result in a dense, well-distributed surface monolayer. In high ionic media (e.g. 40–80 mM), anions present electrostatically bind with the positively charged cetyltrimethylammonium bromide (CTAB) surrounding nanorod surfaces, thereby leading to instability with heavy aggregation in solution. However, once chemically bound on silanized substrates, the nanorods exhibit excellent stability in physiological buffer where high amount of ionic species are present. The fundamental study is followed by demonstration of a practical application of the fabricated biochip in label-free detection based on GNR wavelength shift of the longitudinal palsmon maxima as the optical signature of human IgG model detection.  相似文献   
995.
In this study, detection of staphylococcal enterotoxin A (SEA) in multi-matrices using a highly sensitive and specific microplate chemiluminescence enzyme immunoassay (CLEIA) has been established. A pair of monoclonal antibodies (mAbs) was selected from 37 anti-SEA mAbs by pairwise analysis, and the experimental conditions of the CLEIA were optimized. This CLEIA exhibited high performance with a wide dynamic range from 6.4 pg mL−1 to 1600 pg mL−1, and the measured low limit of detection (LOD) was 3.2 pg mL−1. No cross-reactivity was observed when this method was applied to test SEB, SEC1, and SED. It has also been successfully applied for analyzing SEA in a variety of environmental, biological, and clinical matrices, such as sewage, tap water, river water, roast beef, peanut butter, cured ham, 10% nonfat dry milk, milk, orange juice, human urine, and serum. Thus, the highly sensitive and SEA-specific CLEIA should make it attractive for quantifying SEA in public health and diagnosis in near future.  相似文献   
996.
997.
Paper-based microfluidic devices have been widely investigated in recent years. Among various detection techniques, colorimetric method plays a very important role in paper-based microfluidic devices. The limitation, however, is also clear: they generally require highly sensitive indicators. In this work, we have developed a novel enrichment-based paper test for the discrimination of heavy-metal ions. Comparing to regular paper-based microfluidic devices, enrichment-based technique showed largely improved sensitivity. Combining with eight pyridylazo compounds and array technologies-based pattern-recognition, we have obtained the discrimination capability of eight different heavy-metal ions at same concentration as low as 50 μM using our enrichment-based pyridylazo compounds array paper. Identification of the heavy-metal ions was readily achieved using a standard chemometric approach. This method can be, of course, used for other analytes as well.  相似文献   
998.
Liu  Yanna  Liang  Yan  Zhou  Yuanyuan  Guan  Tianye  Xing  Lu  Rao  Tai  Zhou  Lijun  Yu  Xiaoyi  Wang  Qian  Xie  Lin  Wang  Guangji 《Chromatographia》2013,76(15):949-958

The qualitative and quantitative capability of the ion trap mass analyzer could be greatly affected by the accumulation time. However, the importance of the accumulation time has not so far been thoroughly explored. Here, the influence of ion accumulation time on qualitative and quantitative analysis of complicated components was systematically investigated based on the case study of 40 ophiopogonins in Ophiopogon extract by hybrid ion trap time-of-flight mass spectrometry (LCMS-IT-TOF). In this process, the accumulation time was set at 10, 25, 50, 100, and 200 ms, respectively. The effect of accumulation time on qualitative analysis of ophiopogonins was studied by comparing the total ion current (TIC) of MS1, TIC of MS2, and the number and signal of fragmental ions. The results demonstrated that the signal could be greatly influenced by varying the accumulation time. The number and signal of the fragmental ions were increased significantly with a longer accumulation time in the range of 10–100 ms. Also, the effect of accumulation time on quantitative analysis of ophiopogonins was investigated by comparing the linearity, accuracy, and precision measured on LCMS-IT-TOF. Importantly, quantitative parameters could all be significantly improved by choosing an appropriate accumulation time.

  相似文献   
999.
The preparation of biodegradable and thermoresponsive enzyme–polymer bioconjugates with controllable enzymatic activity via reversible addition−fragmentation chain transfer (RAFT) polymerization and amidation conjugation reaction is presented. A new 2-mercaptothiazoline ester functionalized RAFT agent with intra-disulfide linkage was synthesized and used as chain transfer agent (CTA) to generate a biocompatible homopolymer, poly(ethyleneglycol) acrylate (polyPEG-A) and a thermoresponsive copolymer of poly(ethyleneglycol) acrylate with di(ethyleneglycol)ethyl ether acrylate [poly(PEG-A-co-DEG-A)]. These biodegradable and thermoresponsive polymers were then conjugated to the surface of glucose oxidase (GOx) under mild condition to afford the biodegradable and thermoresponsive enzyme–polymer conjugates. Cleavage of the polymer chains from the GOx surface obviously recovered the enzymatic activity. The thermoresponsive test of GOx-poly(PEG-A-co-DEG-A) revealed that the bioconjugate exhibited regular enzymatic activity fluctuation upon the temperature change below or above the lower critical solution temperature (LCST). The as-prepared enzyme–polymer conjugates were also characterized using 1H NMR, UV–vis spectroscopy, polyacrylamide gel electrophoresis (PAGE) and biocatalytic activity tests. These smart enzyme–polymer conjugates would envision promising applications in biotechnology and biomedicine.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号