首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22513篇
  免费   4155篇
  国内免费   3633篇
化学   17227篇
晶体学   502篇
力学   1197篇
综合类   318篇
数学   2430篇
物理学   8627篇
  2024年   54篇
  2023年   347篇
  2022年   600篇
  2021年   675篇
  2020年   798篇
  2019年   929篇
  2018年   741篇
  2017年   739篇
  2016年   1009篇
  2015年   1114篇
  2014年   1257篇
  2013年   1667篇
  2012年   2143篇
  2011年   2072篇
  2010年   1657篇
  2009年   1606篇
  2008年   1802篇
  2007年   1528篇
  2006年   1531篇
  2005年   1386篇
  2004年   1133篇
  2003年   885篇
  2002年   948篇
  2001年   739篇
  2000年   594篇
  1999年   474篇
  1998年   300篇
  1997年   224篇
  1996年   211篇
  1995年   177篇
  1994年   188篇
  1993年   151篇
  1992年   90篇
  1991年   110篇
  1990年   70篇
  1989年   52篇
  1988年   51篇
  1987年   26篇
  1986年   36篇
  1985年   43篇
  1984年   22篇
  1983年   19篇
  1982年   18篇
  1981年   19篇
  1980年   13篇
  1979年   14篇
  1978年   7篇
  1977年   8篇
  1957年   4篇
  1936年   4篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
2,3-Bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenyl)amino)phenyl) fumaronitrile (TPE-TPA-FN or TTF), which possesses aggregation-induced emission (AIE) characteristic, is doped in organically modified silica (ORMOSIL) nanoparticles. By increasing the weight ratio of TTF to the precursor of silica nanoparticles (the quantities of the precursors were kept the same), the fluorescence intensity of nanoparticles increased correspondingly, due to the formation of larger AIE dots in the cores of ORMOSIL nanoparticles. The fluorescent and biocompatible nanoprobes were then utilized for in vitro imaging of HeLa cells. Two-photon fluorescence microscopy clearly illustrated that the nanoparticles have the capacity of nucleus permeability, as well as cytoplasm staining towards tumor cells. Our experimental results may offer a promising method for fast and bright fluorescence imaging, as well as bio-molecule/drug delivery to cell nucleus.  相似文献   
992.
Chemomics is an interdisciplinary study using approaches from chemoinformatics,bioinformatics,synthetic chemistry,and other related disciplines.Biological systems make natural products from endogenous small molecules (natural product building blocks) through a sequence of enzyme catalytic reactions.For each reaction,the natural product building blocks may contribute a group of atoms to the target natural product.We describe this group of atoms as a chemoyl.A chemome is the complete set of chemoyls in an organism.Chemomics studies chemomes and the principles of natural product syntheses and evolutions.Driven by survival and reproductive demands,biological systems have developed effective protocols to synthesize natural products in order to respond to environmental changes;this results in biological and chemical diversity.In recent years,it has been realized that one of the bottlenecks in drug discovery is the lack of chemical resources for drug screening.Chemomics may solve this problem by revealing the rules governing the creation of chemical diversity in biological systems,and by developing biomimetic synthesis approaches to make quasi natural product libraries for drug screening.This treatise introduces chemomics and outlines its contents and potential applications in the fields of drug innovation.  相似文献   
993.
Preface     
In life sciences,molecules are categorized into biological macromolecules(protein,DNA,RNA etc.)and small molecules(neurotransmitters,vitamins,drugs,natural products,water etc.).The main methodology of chemistry for life sciences is using chemical techniques and tools to explore and manipulate the functions of biological macromolecules.This methodology can be traced back to W hler’s synthesis of urea from"inorganic"compounds in 1828.Today,we realize that chemistry can advance a molecular understanding of biology,and the harnessing of biology can advance chemical knowledge as well[1–4].Chemicals are widely used as probes to investigate biological functions[5–7].  相似文献   
994.
Human intestinal carboxyl esterase (hiCE) is a drug target for ameliorating irinotecan-induced diarrhea. By reducing irinotecan-induced diarrhea, hiCE inhibitors can improve the anti-cancer efficacy of irinotecan. To find effective hiCE inhibitors, a new virtual screening protocol that combines pharmacophore models derived from the hiCE structure and its ligands has been proposed. The hiCE structure has been constructed through homology techniques using hCES1’s crystal structure. The hiCE structure was optimized via molecular dynamics simulations with the most known active hiCE inhibitors docked into the structure. An optimized pharmacophore, derived from the receptor, was then generated. A ligand-based pharmacophore was also generated from a larger set of known hiCE inhibitors. The final hiCE inhibitor predictions were based upon the virtual screening hits from both ligand-based and receptor-based pharmacophore models. The hit rates from the ligand-based and receptor-based pharmacophore models are 88% and 86%, respectively. The final hit rate is 94%. The two models are highly consistent with one another (85%). This proves that both models are reliable.  相似文献   
995.
Carbon quantum dots (CQDs) were synthesized by heating various carbon sources in HNO3 solution at reflux, and the effects of HNO3 concentration on the size of the CQDs were investigated. Furthermore, the oxygen‐containing surface groups of as‐prepared CQDs were selectively reduced by NaBH4, leading to new surface states. The experimental results show that the sizes of CQDs can be tuned by HNO3 concentration and then influence their photoluminescent behaviors; the photoluminescent properties are related to both the size and surface state of the CQDs, but the photocatalytic activities are determined by surface states alone. The different oxygen‐containing groups on the surface of the CQDs can induce different degrees of the band bending upward, which determine the separation and combination of the electron–hole pairs. The high upward band bending, which is induced by C?O and COOH groups, facilitates separation of the electron–hole pairs and then enhances high photocatalytic activity. In contrast, the low upward band bending induced by C? OH groups hardly prevents the electron–hole pairs from surface recombination and then exhibits strong photoluminescence. Therefore, both the photocatalytic activities and optical properties of CQDs can be tuned by their surface states.  相似文献   
996.
The development of electrocatalysts is crucial for renewable energy applications. Metal‐doped graphene hybrid materials have been explored for this purpose, however, with much focus on noble metals, which are limited by their low availability and high costs. Transition metals may serve as promising alternatives. Here, transition metal‐doped graphene hybrids were synthesized by a simple and scalable method. Metal‐doped graphite oxide precursors were thermally exfoliated in either hydrogen or nitrogen atmosphere; by changing exfoliation atmospheres from inert to reductive, we produced materials with different degrees of oxidation. Effects of the presence of metal nanoparticles and exfoliation atmosphere on the morphology and electrocatalytic activity of the hybrid materials were investigated using electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray photoelectron spectroscopy, and cyclic voltammetry. Doping of graphene with transition metal nanoparticles of the 4th period significantly influenced the electrocatalysis of compounds important in energy production and storage applications, with hybrid materials exfoliated in nitrogen atmosphere displaying superior performance over those exfoliated in hydrogen atmosphere. Moreover, nickel‐doped graphene hybrids displayed outstanding electrocatalytic activities towards reduction of O2 when compared to bare graphenes. These findings may be exploited in the research field of renewable energy.  相似文献   
997.
Silanol groups on a silica surface affect the activity of immobilized catalysts because they can influence the hydrophilicity/hydrophobicity, matter transfer, or even transition state in a catalytic reaction. Previously, these silanol groups have usually been passivated by using surface‐passivation reagents, such as alkoxysilanes, bis‐silylamine reagents, chlorosilanes, etc., and surface passivation has typically been found in mesoporous‐silicas‐supported molecular catalysts and heteroatomic catalysts. However, this property has rarely been reported in mesoporous‐silicas‐supported metal‐nanoparticle catalysts. Herein, we prepared an almost‐superhydrophobic SBA‐15‐supported gold‐nanoparticle catalyst by using surface passivation, in which the catalytic activity increased more than 14 times for the reduction of nitrobenzene compared with non‐passivated SBA‐15. In addition, this catalyst can selectively catalyze hydrophobic molecules under our experimental conditions, owing to its high (almost superhydrophobic) hydrophobic properties.  相似文献   
998.
Anchoring groups are extremely important in controlling the performance of dye‐sensitized solar cells (DSCs). The design and characterization of sensitizers with new anchoring groups, in particular non‐carboxylic acid groups, has become a recent focus of DSC research. Herein, new donor? π? acceptor zinc? porphyrin dyes with a pyridine ring as an anchoring group have been designed and synthesized for applications in DSCs. Photophysical and electrochemical investigations demonstrated that the pyridine ring worked effectively as an anchoring group for the porphyrin sensitizers. DSCs that were based on these new porphyrins showed an overall power‐conversion efficiency of about 4.0 % under full sunlight (AM 1.5G, 100 mW cm?2).  相似文献   
999.
The title compound, poly[[μ4‐5‐carboxy‐4‐carboxylato‐2‐(pyridin‐4‐yl)‐1H‐imidazol‐1‐ido]disilver(I)], [Ag2(C10H5N3O4)]n, was synthesized by reacting silver nitrate with 2‐(pyridin‐4‐yl)‐1H‐imidazole‐4,5‐dicarboxylic acid (H3PyIDC) under hydrothermal conditions. The asymmetric unit contains two crystallographically independent AgI cations and one unique HPyIDC2− anion. Both AgI cations are three‐coordinated in distorted T‐shaped coordination geometries. One AgI cation is coordinated by one N and two O atoms from two HPyIDC2− anions, while the other is bonded to one O and two N atoms from two HPyIDC2− anions. It is interesting to note that the HPyIDC2− group acts as a μ4‐bridging ligand to link the AgI cations into a three‐dimensional framework, which can be simplified as a diamondoid topology. The thermal stability and photoluminescent properties of the title compound have also been studied.  相似文献   
1000.
Determination of the tobacco-specific nitrosamine metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its N- and O-glucuronides (NNAL-N-Gluc and NNAL-O-Gluc) is important for toxicology analysis of tobacco smoke induced carcinogenicity and the understanding of detoxification mechanisms of the carcinogenic nitrosamine in humans. But previously reported indirect measurement methods involving enzymolysis and base treatment steps were tedious and time-consuming. In this work, a direct measurement method for simultaneous determination of urinary NNAL, NNAL-N-Gluc and NNAL-O-Gluc by liquid chromatography–tandem mass spectrometry (LC–MS/MS) in a single run was developed for the first time without the need to perform enzymatic or base hydrolysis. Urine samples were purified using dichloromethane and further extracted by solid-phase extraction. Then they were analyzed by LC–MS/MS operated in electrospray positive ionization mode. Chromatographic separation was achieved on a Phenomenex Kinetex PFP column within 6 min. The proposed method was validated and the results demonstrated that the method can produce satisfactory recoveries and reproducibility for the analytes. The applicability of this newly developed method was investigated for the simultaneous analysis of the three metabolites in smokers’ urine and the obtained results were comparable to those detected using the conventional enzymolysis method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号