首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143671篇
  免费   26455篇
  国内免费   14519篇
化学   115037篇
晶体学   1656篇
力学   6987篇
综合类   846篇
数学   15913篇
物理学   44206篇
  2024年   264篇
  2023年   2176篇
  2022年   3088篇
  2021年   3995篇
  2020年   5385篇
  2019年   6309篇
  2018年   4699篇
  2017年   4124篇
  2016年   8188篇
  2015年   8165篇
  2014年   9352篇
  2013年   11873篇
  2012年   12712篇
  2011年   12465篇
  2010年   9856篇
  2009年   9497篇
  2008年   9483篇
  2007年   8155篇
  2006年   7548篇
  2005年   6669篇
  2004年   5400篇
  2003年   4531篇
  2002年   5034篇
  2001年   3824篇
  2000年   3463篇
  1999年   2715篇
  1998年   2011篇
  1997年   1803篇
  1996年   1768篇
  1995年   1575篇
  1994年   1413篇
  1993年   1177篇
  1992年   1047篇
  1991年   902篇
  1990年   774篇
  1989年   597篇
  1988年   456篇
  1987年   395篇
  1986年   391篇
  1985年   328篇
  1984年   225篇
  1983年   183篇
  1982年   160篇
  1981年   105篇
  1980年   69篇
  1979年   38篇
  1978年   27篇
  1976年   26篇
  1975年   25篇
  1957年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
162.
A rapid method had been used for comparative study on Artemisia halodendron Turcz. and its two related plants by gas phase-mass spectrometry (GC-MS). The comparison of the volatile oils obtained in three plants by GC-MS were similar in 20 compositions. However, n-Hexadecanoic acid (10.40%), Biphenyl (7.867%) and 9,12-Octadecadienoic acid (7.25%) were the predominant in the volatile oils of A. halodendron Turcz., whereas these constituents did not exist in the other two plants. And the study investigated the effect of three plants against CCl4-induced hepatotoxicity in mice. 70% ethanol extracts of A. halodendron Turcz. showed weaker protective effect than the other two plants. It suggested that they provide a basis for the identification of the A. halodendron Turcz. from the other two plants and the ethanol extract from three plants exerted a protecting effect against hepatotoxicity.  相似文献   
163.
New thiazole derivatives were synthesized and fully characterized, then coordinated with PtCl4 salt. Also, the newly synthesized Pt(IV) complexes were investigated analytically (elemental and thermogravimetric analyses), spectrally (infrared, UV–visible, mass, 1H NMR, 13C NMR, X‐ray diffraction) as well as theoretically (kinetics, modeling and docking). The data extracted led to the establishment of the best chemical and structural forms. Octahedral geometry was the only formula proposed for all complexes, which is favorable for d6 systems. The molecular ion peaks from mass spectral analysis coincide with all analytical data, confirming the molecular formula proposed. X‐ray diffraction (XRD) and scanning electron microscopy (SEM) allowed discrimination of features between crystalline particles and other amorphous morphology. By applying Gaussian09 as well as HyperChem 8.2 programs, the best structural forms were obtained, as well as computed significant parameters. Computed parameters such as softness, hardness, surface area and reactivity led us towards application in two opposing pathways: tumor inhibition and oxidation activation. The catalytic oxidation for CO was conducted over PtO2, which was yielded from calcination of the most reactive complex. The success of catalytic role for synthesized PtO2 was due to its particulate size and surface morphology, which were estimated from XRD patterns and SEM images, respectively. The antitumor activity was tested versus HCT‐116 and HepG‐2 cell lines. Mild toxicity was recorded for two of the derivatives and their corresponding complexes. This degree of toxicity is more favorable in most cases, due to exclusion of serious side effects, which is coherently attached with known antitumor drugs.  相似文献   
164.
Alkynes cycloaddition reactions are powerful tools for constructing cyclic molecules with optimal atom efficiency, but these reactions cannot proceed at ambient temperature without transition-metal catalysts. In this work, a heterobimetallic complex featuring an Nb–Fe triple bond, Nb(iPrNPMe2)3Fe–PMe3, has been evaluated as the potential catalyst for acetylene cycloaddition, using density functional theory. The calculated results show that the singlet-state (i.e. ground-state) Nb(iPrNPMe2)3Fe–PMe3 can be applied to benzene synthesis, but is not suitable for cyclobutadiene. Benzene can be obtained easily at room temperature and is the unique product on the singlet potential surface. The irradiation of infrared-red light can drive the excitation of singlet Nb(iPrNPMe2)3Fe–PMe3 to its triplet state. Both benzene and cyclobutadiene can be formed on the triplet reaction potential surface due to their low energy barriers. Therefore, Nb(iPrNPMe2)3Fe–PMe3 is a potential high reactivity heterobimetallic catalyst for the cyclotrimerization of alkynes. In the reaction process, the catalytic active site of Nb(iPrNPMe2)3Fe–PMe3 moves from niobium to iron.  相似文献   
165.
Ziritaxestat is a first-in-class autotoxin inhibitor. The purpose of this study was to develop a liquid chromatography/electrospray ionization tandem mass spectrometric (LC–MS/MS) method for the determination of ziritaxestat in rat plasma. The plasma sample was deproteinated using acetonitrile and then separated on an Acquity BEH C18 column with water containing 0.1% formic acid and acetonitrile as mobile phase, which was delivered at 0.4 ml/min. Ziritaxestat and the internal standard (crizotinib) were quantitatively monitored with precursor-to-product transitions of m/z 589.3 > 262.2 and m/z 450.1 > 260.2, respectively. The total running time was 2.5 min. The method showed excellent linearity over the concentration range 0.5–2000 ng/ml, with correlation coefficient >0.9987. The extraction recovery was >82.09% and the matrix effect was not significant. Inter- and intra-day precisions (RSD) were <11.20% and accuracies were in the range of −8.50–7.45%. Ziritaxestat was demonstrated to be stable in rat plasma under the tested conditions. The validated LC–MS/MS method was successfully applied to study the pharmacokinetic profiles of ziritaxestat in rat plasma after intravenous and oral administration. Pharmacokinetic results demonstrated that ziritaxestat displayed a short half-life (~3 h) and low bioavailability (20.52%).  相似文献   
166.
Several phenoxy-imine ligands bearing o-trityl group in phenoxy moiety RN=CHArOH (Ar = C6H2(CPh3)tBu, R = 2,6-Me2C6H3 ( L 1 H ); 2,6-iPr2C6H3 ( L 2 H ); 3,5-(CF3)2C6H3 ( L 3 H ); 3,5-(OMe)2C6H3 ( L 4 H ); CHPh2 ( L 5 H ); CPh3 ( L 6 H )) were synthesized and characterized by1H NMR and 13C NMR spectroscopy. The vanadium complexes based on these ligands LVCl2(THF)2 ( 1–6 ) were synthesized via conventional transmetalation reaction in moderate to high yields. Complexes 1–6 were fully characterized by FT-IR, elemental analyses and the molecular structures of 1 , 2 ·H2O, (2 ·H2O ) 2 (μ-Cl) 2 , 4 , and 5 were confirmed by X-ray crystallographic analysis in which the six-coordinated vanadium centers are in a typical octahedral geometry. Upon activation with Et2AlCl in toluene, complexes 1–6 showed high activities in ethylene polymerization affording polymers with moderate molecular weight (5.9–11.8 × 104 Da). Moreover, in hexane or CH2Cl2, 1–6 /Et2AlCl exhibited enhanced activities. When activated with MAO or MMAO in toluene, these complexes showed relatively low activities but afforded polymers with ultra-high molecular weight (up to 3.30 × 106 Da). 1–6 /Et2AlCl also showed high activities in ethylene/1-hexene copolymerization at room temperature giving moderate molecular-weight polymers (6.5–11.4 × 104 Da) with co-monomer incorporation being of 6.0 ~ 7.8%.  相似文献   
167.
Eucommia ulmoides Oliv. (E. ulmoides) is a valuable and nourishing medicinal herb in China that has been used in the treatment of hypertension. Given the fact that most traditional Chinese medicine is mainly used to treat disease, investigating the pharmacokinetics of traditional Chinese medicines in the pathological state is more useful than that in the normal state. However, the differences in the absorption kinetics of active ingredients of E. ulmoides extract between pathological and physiological conditions have not been reported. Therefore, in this study, the rat intestinal in situ circulatory perfusion model was used to investigate the differences in absorption kinetics of seven active ingredients of E. ulmoides extract in normal and spontaneously hypertensive rats, namely, genipinic acid, protocatechuic acid, neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, (+)-pinoresinol di-O-β-D -glucopyranoside and (+)-pinoresinol 4′-O-β-D -glucopyranoside. Our results indicate that the pathological state of spontaneous hypertension may change the absorption of active components of E. ulmoides extracts, and these findings may provide a reference for improving the rational use of E. ulmoides in the clinic.  相似文献   
168.
Balanophora involucrata J. D. Hooker has been known to possess potential anti-inflammatory and antibacterial activities; however, its antiviral activity has not been evaluated so far. In order to find new neuraminidase inhibitors (NAIs), the neuraminidase (NA) inhibition activity of different B. involucrata extracts was evaluated. In this study, an in vitro NA inhibition assay was performed to identify which extract of B. involucrata exhibits (maximal) inhibitory activity against NA. Ultra high performance liquid chromatography/quadrupole time-of-flight–tandem mass spectroscopy (MS/MS) and molecular docking techniques were used to identify the specific compounds responsible for the anti-influenza activity of the extract, and to explore the potential natural NAIs. The ethyl acetate extract of B. involucrata exhibited significant inhibitory activity against NA with 50% inhibitory concentration (IC50) value of 159.5 μg/mL. Twenty compounds were identified according to the MS/MS spectra; among them two compounds (quercitrin and phloridzin) showed obvious inhibitory activity against NA, with IC50 of 311.76 and 347.32 μmol/L, respectively. This study suggested that B. involucrata can be a potential natural source of NAIs and may be useful in the fight against ferocious influenza viruses.  相似文献   
169.
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号