首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   4篇
  国内免费   2篇
化学   94篇
晶体学   4篇
数学   13篇
物理学   14篇
  2022年   5篇
  2021年   5篇
  2020年   8篇
  2019年   2篇
  2018年   7篇
  2017年   3篇
  2016年   7篇
  2015年   2篇
  2014年   6篇
  2013年   13篇
  2012年   5篇
  2011年   15篇
  2010年   8篇
  2009年   6篇
  2008年   9篇
  2007年   8篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1984年   1篇
排序方式: 共有125条查询结果,搜索用时 31 毫秒
101.
In this study, the antioxidant and antiradical properties of some phyto lignans (nordihydroguaiaretic acid, secoisolariciresinol, secoisolariciresinol diglycoside, and α-(-)-conidendrin) and mammalian lignans (enterodiol and enterolactone) were examined by different antioxidant assays. For this purpose, radical scavenging activities of phyto and mammalian lignans were realized by 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) radical (ABTS•+) scavenging assay and 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging assay. Additionally, the reducing ability of phyto and mammalian lignans were evaluated by cupric ions (Cu2+) reducing (CUPRAC) ability, and ferric ions (Fe3+) and [Fe3+-(TPTZ)2]3+ complex reducing (FRAP) abilities. Also, half maximal inhibitory concentration (IC50) values were determined and reported for DPPH and ABTS•+ scavenging influences of all of the lignan molecules. The absorbances of the lignans were found in the range of 0.150–2.320 for Fe3+ reducing, in the range of 0.040–2.090 for Cu2+ reducing, and in the range of 0.360–1.810 for the FRAP assay. On the other hand, the IC50 values of phyto and mammalian lignans were determined in the ranges of 6.601–932.167 µg/mL for DPPH scavenging and 13.007–27.829 µg/mL for ABTS•+ scavenging. In all of the used bioanalytical methods, phyto lignans, as secondary metabolites in plants, demonstrated considerably higher antioxidant activity compared to that of mammalian lignans. In addition, it was observed that enterodiol and enterolactone exhibited relatively weaker antioxidant activities when compared to phyto lignans or standard antioxidants, including butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), Trolox, and α-tocopherol.  相似文献   
102.
Magnofluorine, a secondary metabolite commonly found in various plants, has pharmacological potential; however, its antioxidant and enzyme inhibition effects have not been investigated. We investigated the antioxidant potential of Magnofluorine using bioanalytical assays with 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+), N,N-dimethyl-p-phenylenediamine dihydrochloride (DMPD•+), and 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging abilities and K3[Fe(CN)6] and Cu2+ reduction abilities. Further, we compared the effects of Magnofluorine and butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-Tocopherol, and Trolox as positive antioxidant controls. According to the analysis results, Magnofluorine removed 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals with an IC50 value of 10.58 μg/mL. The IC50 values of BHA, BHT, Trolox, and α-Tocopherol were 10.10 μg/mL, 25.95 μg/mL, 7.059 μg/mL, and 11.31 μg/mL, respectively. Our results indicated that the DPPH· scavenging effect of Magnofluorine was similar to that of BHA, close to that of Trolox, and better than that of BHT and α-tocopherol. The inhibition effect of Magnofluorine was examined against enzymes, such as acetylcholinesterase (AChE), α-glycosidase, butyrylcholinesterase (BChE), and human carbonic anhydrase II (hCA II), which are linked to global disorders, such as diabetes, Alzheimer’s disease (AD), and glaucoma. Magnofluorine inhibited these metabolic enzymes with Ki values of 10.251.94, 5.991.79, 25.411.10, and 30.563.36 nM, respectively. Thus, Magnofluorine, which has been proven to be an antioxidant, antidiabetic, and anticholinergic in our study, can treat glaucoma. In addition, molecular docking was performed to understand the interactions between Magnofluorine and target enzymes BChE (D: 6T9P), hCA II (A:3HS4), AChE (B:4EY7), and α-glycosidase (C:5NN8). The results suggest that Magnofluorine may be an important compound in the transition from natural sources to industrial applications, especially new drugs.  相似文献   
103.
The Cl replacement reactions of hexachlorocyclotriphosphazene (trimer; N 3 P 3 Cl 6 ) with sodium (N-benzyl)- aminopropanoxides (1 and 2) produced monospiro- (3 and 4), cis-, and trans-dispirocyclotriphosphazenes (13–16). The monospiro tetrakis-aminocyclotriphosphazenes (5–12) were obtained by the Cl substitutions of 3 and 4 with different secondary amines. The cis- (13 and 14) and trans-dispirophosphazenes (15 and 16) possessed 2 chiral P centers, and they were able to present meso and racemic forms, respectively. Moreover, the structures of compounds 5 and 14 were designated using X-ray data. The absolute configuration of compound 14 was found as SR in the solid state. Analytical and spectroscopic data of the phosphazenes were consistent with their suggested structures. Antimicrobial activities of the benzyl-pendant-armed cyclotriphosphazenes were scrutinized against G(+) and G(−) bacteria and yeast strains. The bacterium most affected by the synthesized compounds was Pseudomonas aeruginosa . Minimum inhibitory concentrations and minimal bacterial concentrations were in the range of 125–500 μM. Interactions between the phosphazenes (3–12 and 15) and plasmid DNA were studied with agarose gel electrophoresis. The phosphazene- DNA interaction studies of the cyclotriphosphazenes revealed that phosphazenes 3, 4, and 15 had a substantial effect on supercoiled DNA by cleavage of the double helix.  相似文献   
104.
The Mitsunobu Reaction allows the conversion of primary and secondary alcohols to esters, phenyl ethers, thioethers and some other compounds. The nucleophile employed should be acidic, since one of the reagents, diethylazodicarboxylate (DEAD) must be protonated during the course of the reaction, preventing from the formation of unwanted side products. In this review, we try to focus on the scope and preparative synthetic applications of Mitsunobu reaction as a key step in the total synthesis of biologically active natural products.  相似文献   
105.
In this study, activated carbons were prepared by physical activation from pistachio shell with steam in a rotary reactor. Experiments were performed based on the central composite design (CCD) in DX8 software. A quadratic model for prediction of iodine number and a quadratic model for burn-off were developed using CCD in the activation process. The optimum iodine number and burn-off for physical activation were, respectively, 1,478.17 mg/g and 22.09 wt%, which showed good agreement with the experimental values. The optimum values were achieved at the activation temperature of 816.5 °C, dwell time of 40 min, and gas flow rate of 47.4 l/min.  相似文献   
106.
107.
A diazodiphenylene‐bridged Cu–phthalocyanine polymer was synthesized from the diazonium salt of bensidine and the Cu(II) 1,8,15,22‐tetraaminophthalocyanine complex and characterized with Fourier transform infrared, ultraviolet–visible spectroscopy, and elemental analysis. The polymer was partially soluble in organic solvents such as dimethylformamide and tetrahydrofuran. The molecular weight of the soluble part of the polymer was investigated with ebullioscopy and viscosimetry methods in tetrahydrofuran. Both methods showed that the molecular weight of the polymer was much larger than that of the complex. The conductivity of the samples was measured with a four‐prop conductivity measuring device. Iodine and hydrogen chloride were doped to the polymer, and an increase of about 104 S cm?1 in the electrical conductivity was observed. The cyclic voltammogram of the diazodiphenylene‐bridged Cu–phthalocyanine polymer in contact with a LiClO4 electrolyte exhibited two reductions and two reoxidations with high reversibility and electrochemical stability. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5692–5698, 2006  相似文献   
108.
The reaction of of 4‐amino‐5‐ethyl‐2H‐1,2,4‐triazole‐3(4H)‐thione (AETT, L ) with furfural in methanol led to the corresponding Schiff‐Base ( L1 ). The reaction of L1 with [Cu(PPh3)2]Cl in methanol gave to the neutral compound [( L1 )Cu(PPh3)2Cl] ( 1 ). By recrystallization of 1 from CH3CN the complex [( L1 )Cu(PPh3)2Cl]·CH3CN ( 1a ) was obtained. All compounds were characterized by infrared spectroscopy, elemental analyses as well as by X‐ray diffraction studies. Crystal data for L1 at ?80 °C: space group with a = 788.4(1), b = 830.3(2), c = 928.8(2) pm, α = 84.53(1)°, β = 65.93(1)°, γ = 72.02(1)°, Z = 2, R1 = 0.0323; for 1 at ?100 °C: space group with a = 1166.3(1), b = 1423.8(2), c = 1489.1(2) pm, α = 62.15(1)°, β = 72.04(1)°, γ = 88.82(1)°, Z = 2, R1 = 0.0338 and for 1a at ?100 °C: space group P21/c with a = 1294.1(1), b = 1019.8(2), c = 3316.9(4) pm, β = 94.73(1)°, Z = 4, R1 = 0.0435.  相似文献   
109.
Yildiz L  Başkan KS  Tütem E  Apak R 《Talanta》2008,77(1):304-313
This study aims to identify the essential antioxidant compounds present in parsley (Petroselinum sativum) and celery (Apium graveolens) leaves belonging to the Umbelliferae (Apiaceae) family, and in stinging nettle (Urtica dioica) belonging to Urticaceae family, to measure the total antioxidant capacity (TAC) of these compounds with CUPRAC (cupric ion reducing antioxidant capacity) and ABTS spectrophotometric methods, and to correlate the TAC with high performance liquid chromatography (HPLC) findings. The CUPRAC spectrophotometric method of TAC assay using copper(II)-neocuproine (2,9-dimethyl-1,10-phenanthroline) as the chromogenic oxidant was developed in our laboratories. The individual antioxidant constituents of plant extracts were identified and quantified by HPLC on a C18 column using a modified mobile phase of gradient elution comprised of MeOH-0.2% o-phosphoric acid and UV detection for polyphenols at 280 nm. The TAC values of HPLC-quantified antioxidant constituents were found, and compared for the first time with those found by CUPRAC. The TAC of HPLC-quantified compounds accounted for a relatively high percentage of the observed CUPRAC capacities of plant extracts, namely 81% of nettle, 60-77% of parsley (in different hydrolyzates of extract and solid sample), and 41-57% of celery leaves (in different hydrolyzates). The CUPRAC total capacities of the 70% MeOH extracts of studied plants (in the units of mmol trolox g−1 plant) were in the order: celery leaves > nettle > parsley. The TAC calculated with the aid of HPLC-spectrophotometry did not compensate for 100% of the CUPRAC total capacities, because all flavonoid glycosides subjected to hydrolysis were either not detectable with HPLC, or not converted to the corresponding aglycons (i.e., easily detectable and quantifiable with HPLC) during the hydrolysis step.  相似文献   
110.
Potential cycling was used for oxidation of NAD+ and producing an electroactive redox couple which strongly adsorbed on the electrode surface modified with single walled carbon nanotubes (SWCNTs). Modified electrode shows a pair of well defined and nearly reversible redox peaks at pH range 1–13 and the response showed a surface‐controlled electrode process. The surface coverage and heterogeneous electron transfer rate constant (ks) of adsorbed redox couple onto CNTs films were about 6.32×10?10 mol cm?2 and 2.0 (±0.20) s?1, respectively, indicating the high loading ability of CNTs toward the oxidation product of NAD+ (2,8‐dihydroxy adenine dinucleotide) and great facilitation of the electron transfer between redox couple and CNTs immobilized onto electrode surface. The modified electrode exhibited excellent electrocatalytic activity for H2O2 reduction at reduced overpotential. The catalytic rate constant for H2O2 reduction was found to be 2.22(±0.20)×104 M?1 s?1. The catalytic reduction current allows the amperometric detection of H2O2 at an applied potential of ?0.25 V vs. Ag/AgCl with a detection limit of 10 pM and linear response up to 100 nM and resulting analytical sensitivity 747.6 nA/pM. The remarkably low detection limit (10 pM) is the lowest value ever reported for direct H2O2 determination on the electrodes at pH 7. The modified electrode can be used for monitoring H2O2 without the need for an enzyme or enzyme mimic. The proposed method for rapid amperometric detection of H2O2 is low cost and high throughput. Furthermore, the sensor can be used to any detection scheme that uses enzymatically generated H2O2 as a reactive product in biological systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号