首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  国内免费   1篇
化学   15篇
数学   1篇
物理学   11篇
  2021年   2篇
  2020年   5篇
  2014年   1篇
  2011年   1篇
  2008年   2篇
  2006年   1篇
  2002年   5篇
  2001年   6篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
排序方式: 共有27条查询结果,搜索用时 0 毫秒
21.
RK Das  AR Panda  RK Sahoo  MR Swain 《Pramana》2002,58(3):551-561
The semileptonic decay width of heavy baryons such as (Λ b → Λcev) has been estimated in the framework of a nonrelativistic field theoretic quark model where four component quark field operators along with a harmonic oscillator wave function are used to describe translationally invariant hadronic states. The present estimation does not make an explicit use of heavy quark symmetry and has a reasonable agreement with the experimentally measured decay width, polarisation ratio and form factors with the harmonic oscillator radii and quark momentum distribution inside the hadron as free parameters.  相似文献   
22.
When added to protein solutions, poly(ethylene glycol) (PEG) creates an effective attraction between protein molecules due to depletion forces. This effect has been widely used to crystallize proteins, and PEG is among the most successful crystallization agents in current use. However, PEG is almost always used in combination with a salt at either low or relatively high concentrations. Here the effects of sodium chloride and ammonium sulfate concentration on PEG 8000/ovalbumin liquid-liquid (L-L) phase separation are investigated. At low salt the L-L phase separation occurs at decreasing protein concentration with increasing salt concentration, presumably due to repulsive electrostatic interactions between proteins. At high salt concentration, the behavior depends on the nature of the salt. Sodium chloride has little effect on the L-L phase separation, but ammonium sulfate decreases the protein concentration at which the L-L phase separation occurs. This trend is attributed to the effects of critical fluctuations on depletion forces. The implications of these results for designing solution conditions optimal for protein crystallization are discussed.  相似文献   
23.
RK Khanna  K Baheti 《Pramana》2001,56(6):755-766
In the present paper we have investigated the self-focusing behaviour of radially symmetrical rippled Gaussian laser beam propagating in a plasma. Considering the nonlinearity to arise from relativistic phenomena and following the approach of Akhmanov et al, which is based on the WKB and paraxial-ray approximation, the self-focusing behaviour has been investigated in some detail. The effect of the position and width of the ripple on the self-focusing of laser beam has been studied for arbitrary large magnitude of nonlinearity. Results indicate that the medium behaves as an oscillatory wave-guide. The self-focusing is found to depend on the position parameter of ripple as well as on the beam width. Values of critical power has been calculated for different values of the position parameter of ripple. Effects of axially and radially inhomogeneous plasma on self-focusing behaviour have been investigated and presented here.  相似文献   
24.
High-spin states of 95,97Mo (Z=42, N=53,55) nuclei have been investigated through 82Se(18O, xn) reaction at Eb=60 MeV. The level scheme in 95Mo has been observed upto ≏ 10 MeV in the present experiment. The level structure shows mainly single particle character. In 97Mo, the ground state level sequence has been extended to ≏ 4.5 MeV while the previous information had been up to 2.4 MeV. A negative parity band built on 1437 keV (11/2) excited state has been extended to 5.5 MeV. The structure seems to show a coexistence of single particle and collective modes of excitation. Properties of both the nuclei have been compared with shell model calculations using OXBASH.  相似文献   
25.
The nucleus 30 65 Zn was studied using the 52Cr(16O, 2pn)65Zn reaction at a beam energy of 65 MeV. The level scheme is extended up to an excitation energy of 10.57 MeV for spin-parity (41/2?) with several newly observed transitions placed in it.  相似文献   
26.
27.
RK Choudhury 《Pramana》2001,57(2-3):585-600
Nuclear fission process involves large scale shape changes of the nucleus, while it evolves from a nearly spherical configuration to two separated fission fragments. The dynamics of these shape changes in the nuclear many body system is governed by a strong interplay of the collective and single particle degrees of freedom. With the availability of heavy ion accelerators, there has been an impetus to study the nuclear dynamics through the investigations of nucleus-nucleus collisions involving fusion and fission process. From the various investigations carried out in the past years, it is now well recognized that there is large scale damping of collective modes in heavy ion induced fission reactions, which in other words implies that nuclear motion is highly viscous. In recent years, there have been many experimental observations in heavy ion induced fission reactions at medium bombarding energies, which suggest possible occurrence of various non-equilibrium modes of fission such as quasi-fission, fast fission and pre-equilibrium fission, where some of the internal degrees of freedom of the nucleus is not fully equilibrated. We have carried out extensive investigations on the fission fragment angular distributions at near barrier bombarding energies using heavy fissile targets. The measured fragment anisotropies when compared with the standard saddle point model (SSPM) calculations show that for projectile-target systems having zero or low ground state spins, the angular anisotropy exhibits a peak-like behaviour at the sub barrier energies, which cannot be explained by the SSPM calculations. For projectiles or targets with large ground state spins, the anomalous peaking gets washed out due to smearing of the K-distribution by the intrinsic entrance channel spins. Recently studies have been carried out on the spin distributions of fission fragments through the gamma ray multiplicity measurements. The fission fragments acquire spin mainly from two sources: (i) due to rigid rotation of the nascent fragments at scission and (ii) due to statistical excitation of the spin bearing collective modes in the fissioning nucleus. One of the collective modes — the tilting mode depends on the K quantum number and is responsible for the emission angle dependence of fragment spin. In our studies, we have shown conclusively that the collective statistical spin modes get strongly suppressed for high K values corresponding to large rotational frequencies along the fission axis. These results bring out the importance of the dynamical effects in the heavy ion induced fusion-fission reactions. The present article will review the work carried out on the above aspects in heavy ion fission reactions as well as on the fission time scales, and some of the recent studies on the mass-energy correlations of fission fragments at near-barrier bombarding energies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号