首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2342篇
  免费   60篇
  国内免费   19篇
化学   1436篇
晶体学   20篇
力学   84篇
数学   440篇
物理学   441篇
  2021年   24篇
  2020年   27篇
  2019年   35篇
  2018年   24篇
  2017年   16篇
  2016年   40篇
  2015年   48篇
  2014年   35篇
  2013年   101篇
  2012年   79篇
  2011年   99篇
  2010年   58篇
  2009年   37篇
  2008年   72篇
  2007年   89篇
  2006年   103篇
  2005年   122篇
  2004年   92篇
  2003年   96篇
  2002年   79篇
  2001年   52篇
  2000年   46篇
  1999年   27篇
  1998年   21篇
  1997年   34篇
  1996年   36篇
  1995年   35篇
  1994年   36篇
  1993年   36篇
  1992年   45篇
  1991年   39篇
  1990年   27篇
  1989年   32篇
  1988年   29篇
  1987年   17篇
  1986年   21篇
  1985年   41篇
  1984年   35篇
  1983年   35篇
  1982年   35篇
  1981年   32篇
  1980年   35篇
  1979年   26篇
  1978年   37篇
  1977年   27篇
  1976年   35篇
  1975年   29篇
  1974年   40篇
  1973年   39篇
  1972年   16篇
排序方式: 共有2421条查询结果,搜索用时 250 毫秒
991.
Gas production from shale gas reservoirs plays a significant role in satisfying increasing energy demands. Compared with conventional sandstone and carbonate reservoirs, shale gas reservoirs are characterized by extremely low porosity, ultra-low permeability and high clay content. Slip flow, diffusion, adsorption and desorption are the primary gas transport processes in shale matrix, while Darcy flow is restricted to fractures. Understanding methane diffusion and adsorption, and gas flow and equilibrium in the low-permeability matrix of shale is crucial for shale formation evaluation and for predicting gas production. Modeling of diffusion in low-permeability shale rocks requires use of the Dusty gas model (DGM) rather than Fick’s law. The DGM is incorporated in the TOUGH2 module EOS7C-ECBM, a modified version of EOS7C that simulates multicomponent gas mixture transport in porous media. Also included in EOS7C-ECBM is the extended Langmuir model for adsorption and desorption of gases. In this study, a column shale model was constructed to simulate methane diffusion and adsorption through shale rocks. The process of binary \(\hbox {CH}_{4}{-}\hbox {N}_{2}\) diffusion and adsorption was analyzed. A sensitivity study was performed to investigate the effects of pressure, temperature and permeability on diffusion and adsorption in shale rocks. The results show that methane gas diffusion and adsorption in shale is a slow process of dynamic equilibrium, which can be illustrated by the slope of a curve in \(\hbox {CH}_{4}\) mass variation. The amount of adsorption increases with the pressure increase at the low pressure, and the mass change by gas diffusion will decrease due to the decrease in the compressibility factor of the gas. With the elevated temperature, the gas molecules move faster and then the greater gas diffusion rates make the process duration shorter. The gas diffusion rate decreases with the permeability decrease, and there is a limit of gas diffusion if the permeability is less than \(1.0\,\times \,10^{-15}\, \hbox { m}^{2}\). The results can provide insights for a better understanding of methane diffusion and adsorption in the shale rocks so as to optimize gas production performance of shale gas reservoirs.  相似文献   
992.
This study applies particle image velocimetry (PIV) to an optical spark-ignition direct-injection engine in order to investigate the effects of fuel-injection on in-cylinder flow. Five injection timing combinations, each employing a stoichiometric 1:1 split ratio double-injection strategy, were analysed at an engine speed of 1200 RPM and an intake pressure of 100 kPa. Timings ranged from two injections in the intake stroke to two injections in the compression stroke, resulting in a variety of in-cylinder environments from well-mixed to highly turbulent. PIV images were acquired at a sampling frequency of 5 kHz on a selected swirl plane. The flow fields were decomposed into mean and fluctuating components via two spatial filtering approaches — one using a fixed 8 mm cut-off length, and the other using a mean flow speed scaled cut-off length which was tuned in order to match the turbulent kinetic energy (TKE) profile of a 300 Hz temporal filter. From engine performance tests, the in-cylinder pressure traces, indicated mean effective pressure (IMEP), and combustion phasing data showed very high sensitivity to injection timing variations. To explain the observed trend, correspondence between the measured flow and these performance parameters was evaluated. An expected global trend of increasing turbulence with retarded injection timing was clearly observed; however, relationships between TKE and burn rate were not as obvious as anticipated, suggesting that turbulence is not the predominant factor associated with injection timing variations which impacts engine performance. Stronger links were observed between bulk flow velocity and burn rate, particularly during the early stages of flame development. Injection timing was also found to have a significant impact on combustion stability, where it was observed that low-frequency flow fluctuation intensity revealed strong similarities with the coefficient of variance (CoV) of IMEP, suggesting that these fluctuations are a suitable measure of cycle-to-cycle variation — likely due to the influence of bulk flow on flame kernel development.  相似文献   
993.
We present an extension of the Stefan-type solution method applicable to multi-component, multi-phase 1D porous flows, and illustrate the method by applying it to phase separation dynamics in an NaCl–\(\hbox {H}_2\hbox {O}\)-saturated hydrothermal heat pipe. For this example, three mathematical models are constructed. The first two models concern the rate of progression of two interfaces, one separating brine from two-phase fluid and another separating two-phase fluid from single-phase liquid at seawater salinity. The brine layer model shows that the layer may reach quasi-steady-state thickness even while the salt content of the layer continues to increase; the two-phase layer model shows how variable heat flux at the top of the layer leads to departure from the linear growth rate predicted by a simpler model. The third model concerns the temperature profile in the entire column. The governing advection–diffusion equation has highly variable coefficients, with no negligible terms in it in the region of parameter space considered. We present a method to solve this type of equation by constructing a propagator and a corresponding Green’s function. Finally, we show how to use the developed framework to test the internal consistency of numerical simulations, again using the 1D heat pipe as an example.  相似文献   
994.
Hu K  Peng CK  Huang NE  Wu Z  Lipsitz LA  Cavallerano J  Novak V 《Physica A》2008,387(10):2279-2292
Cerebral autoregulation is an important mechanism that involves dilatation and constriction in arterioles to maintain relatively stable cerebral blood flow in response to changes of systemic blood pressure. Traditional assessments of autoregulation focus on the changes of cerebral blood flow velocity in response to large blood pressure fluctuations induced by interventions. This approach is not feasible for patients with impaired autoregulation or cardiovascular regulation. Here we propose a newly developed technique—the multimodal pressure-flow (MMPF) analysis, which assesses autoregulation by quantifying nonlinear phase interactions between spontaneous oscillations in blood pressure and flow velocity during resting conditions. We show that cerebral autoregulation in healthy subjects can be characterized by specific phase shifts between spontaneous blood pressure and flow velocity oscillations, and the phase shifts are significantly reduced in diabetic subjects. Smaller phase shifts between oscillations in the two variables indicate more passive dependence of blood flow velocity on blood pressure, thus suggesting impaired cerebral autoregulation. Moreover, the reduction of the phase shifts in diabetes is observed not only in previously-recognized effective region of cerebral autoregulation (<0.1 Hz), but also over the higher frequency range from ∼0.1 to 0.4 Hz. These findings indicate that type 2 diabetes mellitus alters cerebral blood flow regulation over a wide frequency range and that this alteration can be reliably assessed from spontaneous oscillations in blood pressure and blood flow velocity during resting conditions. We also show that the MMPF method has better performance than traditional approaches based on Fourier transform, and is more suitable for the quantification of nonlinear phase interactions between nonstationary biological signals such as blood pressure and blood flow.  相似文献   
995.
Reflection of high-frequency acoustic signals from an air-sea interface with waves is considered in terms of determining travel times for acoustic tomography. Wave-induced, multi-path rays are investigated to determine how they influence the assumption that the time of the largest matched filter magnitude between the source and receiver signals is the best estimate of the arrival time of the flat-surface specular ray path. A simple reflection model is developed to consider the impact of in-plane, multi-path arrivals on the signal detected by a receiver. It is found that the number of multi-path rays between a source and receiver increases significantly with the number of times the ray paths strike the ocean surface. In test cases, there was always one of the multi-path rays that closely followed the flat-surface specular ray path. But all the multi-path rays arrive at the receiver almost simultaneously, resulting in interference with the signal from the flat-surface specular ray path. As a result, multi-path arrivals due to open ocean surface waves often distort the received signal such that maxima of matched filtering magnitudes will not always be a reliable indicator of the arrival time of flat-surface specular ray paths.  相似文献   
996.
Peptide standards and tryptic digests of ribonuclease B are separated by comprehensive two-dimensional reversed phase liquid chromatography (RPLC) and capillary zone electrophoresis (CZE) and detected on-line by electrospray mass spectrometry. The RPLC column is coupled to the CZE column by a transverse flow gating interface. A new rugged microelectrospray needle is described that combines high ionization efficiency, low flow rates, and a sheath flow. The result is a system combining the separation capabilities of both RPLC and CZE with on-line mass spectrometric detection, all in about 15 min.  相似文献   
997.
998.
Journal of Chemical Crystallography - Two series of aluminum-lanthanide-sodium 12-metallacrown-4 compounds have been synthesized and characterized by single-crystal X-ray analysis. For the...  相似文献   
999.
Various versatile chain transfer agents (CTAs) have been synthesized for reversible addition fragmentation chain transfer (RAFT) polymerzation. Such CTAs have been used to modify hydroxyl containing materials and produce well-controlled molecular architectures such as amphiphilic copolymer from poly (ethylene glycol), AB block copolymer consisting of a biodegradable segment, poly (l-lactic acid) (PLLA) and grafted copolymers of poly (styrene), poly (methyl methacrylate) and poly (methyl acrylate) from cellulose.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号