首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1119篇
  免费   25篇
  国内免费   5篇
化学   582篇
晶体学   5篇
力学   30篇
数学   216篇
物理学   316篇
  2022年   6篇
  2021年   10篇
  2020年   14篇
  2019年   12篇
  2018年   11篇
  2017年   13篇
  2016年   26篇
  2015年   28篇
  2014年   29篇
  2013年   53篇
  2012年   50篇
  2011年   69篇
  2010年   51篇
  2009年   36篇
  2008年   69篇
  2007年   52篇
  2006年   56篇
  2005年   91篇
  2004年   64篇
  2003年   40篇
  2002年   36篇
  2001年   28篇
  2000年   30篇
  1999年   15篇
  1998年   21篇
  1997年   13篇
  1996年   22篇
  1995年   13篇
  1994年   18篇
  1993年   12篇
  1992年   14篇
  1991年   12篇
  1990年   6篇
  1989年   8篇
  1988年   7篇
  1987年   6篇
  1986年   7篇
  1985年   9篇
  1984年   9篇
  1983年   10篇
  1982年   5篇
  1981年   7篇
  1980年   5篇
  1979年   9篇
  1978年   3篇
  1977年   8篇
  1975年   4篇
  1974年   4篇
  1965年   3篇
  1959年   3篇
排序方式: 共有1149条查询结果,搜索用时 0 毫秒
61.
Two isomers of C70(CF3)12 have been isolated from a mixture obtained by trifluoromethylation of C70 with CF3I; their molecular structures determined by X-ray crystallography are in good agreement with the results of theoretical DFT calculations for the most stable C70(CF3)12 isomers.  相似文献   
62.
A new class of sol-gel-derived photocatalytic materials has been synthesized and used in solar-assisted photodegradation studies. The materials are comprised of a homogeneous dispersion of commercial TiO2 powder into silica and organically modified silicate (Ormosil) hosts. The efficiency of the photocatalytic properties of these TiO2-containing materials was determined by their relative performance in the solar photodecomposition of aqueous rhodamine B. The improved adsorption properties of the modified materials compared to commercial TiO2 increase the photodecomposition rate and the buoyancy properties, although excess hydrophobicity decreases the wetted section of the catalyst and its photocatalytic performance. These materials can be used as floatable catalysts for solar-assisted water purification.  相似文献   
63.
In the two-photon visible dissociation of the iodobenzene cation, laser pulse shape is unimportant when collisional relaxation is slow compared to the time between pulses but becomes important when the relaxation rate is comparable to time between pulses. The dissociation can be simulated using an internal energy-governed computer model.  相似文献   
64.
High resolution HF product time-of-flight spectra measured for the reactive scattering of F atoms from n-H2(p-H2) molecules at collision energies between 69 and 81 meV are compared with exact coupled-channel quantum mechanical calculations based on the Stark-Werner ab initio ground state potential energy surface. Excellent agreement between the experimental and computed rotational distributions is found for the HF product vibrational states v'=1 and v'=2. For the v'=3 vibrational state the agreement, however, is less satisfactory, especially for the reaction with p-H2. The results for v'=1 and v'=2 confirm that the reaction dynamics for these product states is accurately described by the ground electronic state 1 (2)A' potential energy surface. The deviations for HF(v'=3, j' > or =2) are attributed to an enhancement of the reaction resulting from the 25% fraction of excited ((2)P(12)) fluorine atoms in the reactant beam.  相似文献   
65.
Treatment of 2‐ethynylanilines with P(OPh)3 gives either 2,2‐diphenoxy‐2‐λ5‐phosphaquinolines or 2‐phenoxy‐2‐λ5‐phosphaquinolin‐2‐ones under transition‐metal‐free conditions. This reaction offers access to an underexplored heterocycle, which opens up the study of the fundamental nature of the N?PV double bond and its potential for delocalization within a cyclic π‐electron system. This heterocycle can serve as a carbostyril mimic, with application as a bioisostere for pharmaceuticals based on the 2‐quinolinone scaffold. It also holds promise as a new fluorophore, since initial screening reveals quantum yields upwards of 40 %, Stokes shifts of 50–150 nm, and emission wavelengths of 380–540 nm. The phosphaquinolin‐2‐ones possess one of the strongest solution‐state dimerization constants for a D–A system (130 M ?1) owing to the close proximity of a strong acceptor (P?O) and a strong donor (phosphonamidate N? H), which suggests that they might hold promise as new hydrogen‐bonding hosts for optoelectronic sensing.  相似文献   
66.
Spherical particles of 50-100 mum size composed of poly(acrylic acid) networks covalently bonded to Pluronic polyether copolymers were tested for swelling in aqueous media. The microgels were cross-linked either by permanent ethylene glycol dimethacrylate (EGDMA) cross-links alone or by EDGMA together with reversible disulfide or biodegradable azoaromatic cross-links. Optimum conditions for a rapid, diffusion-limited swelling of the pH- and temperature-sensitive microgels with nondegradable cross-links were found. The microgels cross-linked by disulfide groups and equilibrium-swollen in the buffer solution exhibited degradation-limited kinetics of swelling under physiological conditions, with a first-order reaction constant, k(1), linearly proportional to the concentration of reducing agents such as dithiotreitol and tris(2-carboxyethyl)phosphine (TCEP). A severalfold faster swelling in the presence of more powerful reducing agent, TCEP, was observed, indicating the chemical specificity of the microgel swelling. The reoxidation of the thiol groups into disulfide cross-links by sodium hypochlorite led to the restoration of the microgels' diameter measured prior to the reduction-reoxidation cycle, which confirms the shape memory of the microgels. Enzymatically degradable azoaromatic cross-links enabled slow microgel swelling due to degradation of the cross-links by azoreductases from the rat intestinal cecum. The low rate of swelling of the Pluronic-containing microgels can enable sustained drug release in colon-specific drug delivery.  相似文献   
67.
The unique properties of Langmuir film formation were utilized in assembling a thin skin of an asymmetric membrane. An octadecyltrimethoxysilane (ODTMS) Langmuir monolayer was formed at the air–water interface and served as the substrate for growing a bulky sol–gel polymer in situ. The latter was based on the electrochemical deposition of tetramethoxysilane dissolved in the water subphase by means of horizontal touch electrochemistry. The resultant asymmetric layer that consisted of a thin hydrophobic ODTMS Langmuir film connected to a bulk hydrophilic sol–gel network was studied in situ and ex situ by using various techniques, such as cyclic voltammetry, electrochemical impedance spectroscopy (EIS), scanning electron microscopy, transmission electron microscopy (TEM), and goniometry. We found that a porous hydrophilic film grew on top of a hydrophobic layer as was evident from TEM, contact angle, and EIS analyses. The film thickness and film permeability could be controlled by changing the deposition conditions such as the potential window applied and its duration. Hence, this method offers an alternative approach for assembling asymmetric films for various applications  相似文献   
68.
Recent advances in wet chemical synthesis and biomolecular functionalization of gold nanoparticles have led to a dramatic expansion of their potential biomedical applications, including biosensorics, bioimaging, photothermal therapy, and targeted drug delivery. As the range of gold nanoparticle types and their applications continues to increase, human safety concerns are gaining attention, which makes it necessary to better understand the potential toxicity hazards of these novel materials. Whereas about 80 reports on the in vivo biodistribution and in vitro cell toxicity of gold nanoparticles are available in the literature, there is lack of correlation between both fields and there is no clear understanding of intrinsic nanoparticle effects. At present, the major obstacle is the significant discrepancy in experimental conditions under which biodistribution and toxicity effects have been evaluated. This critical review presents a detailed analysis of data on the in vitro and in vivo biodistribution and toxicity of most popular gold nanoparticles, including atomic clusters and colloidal particles of diameters from 1 to 200 nm, gold nanoshells, nanorods, and nanowires. Emphasis is placed on the systematization of data over particle types and parameters, particle surface functionalization, animal and cell models, organs examined, doses applied, the type of particle administration and the time of examination, assays for evaluating gold particle toxicity, and methods for determining the gold concentration in organs and distribution of particles over cells. On the basis of a critical analysis of data, we arrive at some general conclusions on key nanoparticle parameters, methods of particle surface modification, and doses administered that determine the type and kinetics of biodistribution and toxicity at cellular and organismal levels (197 references).  相似文献   
69.
Difluorinated higher fullerenes have been studied by Knudsen cell mass spectrometry. Thermal negative ions CnF2 (n=60, 70, 72, 74, 76 and 78) were produced inside the effusion cell as well as the neutral molecules C60F2 and C70F2. From the equilibrium constants for the electron exchange reactions between difluorinated fullerenes and their parents electron affinity values were derived for C60F2 (2.74 eV) and C70F2 (2.80 eV).  相似文献   
70.
The mechanism of aerobic oxidation of aromatic and alkyl aromatic compounds using anthracene and xanthene, respectively, as a model compound was investigated using a phosphovanadomolybdate polyoxometalate, H(5)PV(2)Mo(10)O(40), as catalyst under mild, liquid-phase conditions. The polyoxometalate is a soluble analogue of insoluble mixed-metal oxides often used for high-temperature gas-phase heterogeneous oxidation which proceed by a Mars-van Krevelen mechanism. The general purpose of the present investigation was to prove that a Mars-van Krevelen mechanism is possible also in liquid-phase, homogeneous oxidation reactions. First, the oxygen transfer from H(5)PV(2)Mo(10)O(40) to the hydrocarbons was studied using various techniques to show that commonly observed liquid-phase oxidation mechanisms, autoxidation, and oxidative nucleophilic substitution were not occurring in this case. Techniques used included (a) use of (18)O-labeled molecular oxygen, polyoxometalate, and water; (b) carrying out reactions under anaerobic conditions; (c) performing the reaction with an alternative nucleophile (acetate) or under anhydrous conditions; and (d) determination of the reaction stoichiometry. All of the experiments pointed against autoxidation and oxidative nucleophilic substitution and toward a Mars-van Krevelen mechanism. Second, the mode of activation of the hydrocarbon was determined to be by electron transfer, as opposed to hydrogen atom transfer from the hydrocarbon to the polyoxometalate. Kinetic studies showed that an outer-sphere electron transfer was probable with formation of a donor-acceptor complex. Further studies enabled the isolation and observation of intermediates by ESR and NMR spectroscopy. For anthracene, the immediate result of electron transfer, that is formation of an anthracene radical cation and reduced polyoxometalate, was observed by ESR spectroscopy. The ESR spectrum, together with kinetics experiments, including kinetic isotope experiments and (1)H NMR, support a Mars-van Krevelen mechanism in which the rate-determining step is the oxygen-transfer reaction between the polyoxometalate and the intermediate radical cation. Anthraquinone is the only observable reaction product. For xanthene, the radical cation could not be observed. Instead, the initial radical cation undergoes fast additional proton and electron transfer (or hydrogen atom transfer) to yield a stable benzylic cation observable by (1)H NMR. Again, kinetics experiments support the notion of an oxygen-transfer rate-determining step between the xanthenyl cation and the polyoxometalate, with formation of xanthen-9-one as the only product. Schemes summarizing the proposed reaction mechanisms are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号