首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   9篇
  国内免费   1篇
化学   210篇
晶体学   1篇
力学   26篇
数学   30篇
物理学   64篇
  2023年   3篇
  2022年   8篇
  2021年   7篇
  2020年   9篇
  2019年   4篇
  2018年   8篇
  2017年   7篇
  2016年   7篇
  2015年   3篇
  2014年   13篇
  2013年   20篇
  2012年   28篇
  2011年   34篇
  2010年   8篇
  2009年   15篇
  2008年   17篇
  2007年   13篇
  2006年   13篇
  2005年   22篇
  2004年   14篇
  2003年   13篇
  2002年   9篇
  2001年   3篇
  2000年   5篇
  1999年   6篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1975年   3篇
  1974年   2篇
  1971年   1篇
排序方式: 共有331条查询结果,搜索用时 15 毫秒
321.
322.
A generalized analytical treatment of dimensionless equations describing turbulent forced convection and saturated nucleate boiling heat transfer leads to a new flow boiling relationship. This relationship yields a two-phase Nusselt number in terms of dimensionless parameters of the system and includes the effects of voidage and the suppression of boiling caused by the flow. It is applicable to geometries such as flow over tube bundles and flat plates in addition to the more commonly studies case of flow in tubes.The relationship is shown to correlate well the existing data on water over a wide range of conditions. A single experimentally determined factor is required and this factor is found for water and tentatively for Refrigerant 113 and cyclohexane.  相似文献   
323.
In this work we show that light-matter excitations (polaritons) generated inside a hollow-core one-dimensional fiber filled with two types of atoms, can exhibit Luttinger liquid behavior. We first explain how to prepare and drive this quantum-optical system to a strongly interacting regime, described by a bosonic two-component Lieb-Liniger model. Utilizing the connection between strongly interacting bosonic and fermionic systems, we then show how spin-charge separation could be observed by probing the correlations in the polaritons. This is performed by first mapping the polaritons to propagating photon pulses and then measuring the effective photonic spin and charge densities and velocities by analyzing the correlations in the emitted photon spectrum. The necessary regime of interactions is achievable with current quantum-optical technology.  相似文献   
324.
Symmetric rank-one (SR1) is one of the competitive formulas among the quasi-Newton (QN) methods. In this paper, we propose some modified SR1 updates based on the modified secant equations, which use both gradient and function information. Furthermore, to avoid the loss of positive definiteness and zero denominators of the new SR1 updates, we apply a restart procedure to this update. Three new algorithms are given to improve the Hessian approximation with modified secant equations for the SR1 method. Numerical results show that the proposed algorithms are very encouraging and the advantage of the proposed algorithms over the standard SR1 and BFGS updates is clearly observed.  相似文献   
325.
This paper concerns the memoryless quasi-Newton method, that is precisely the quasi-Newton method for which the approximation to the inverse of Hessian, at each step, is updated from the identity matrix. Hence its search direction can be computed without the storage of matrices. In this paper, a scaled memoryless symmetric rank one (SR1) method for solving large-scale unconstrained optimization problems is developed. The basic idea is to incorporate the SR1 update within the framework of the memoryless quasi-Newton method. However, it is well-known that the SR1 update may not preserve positive definiteness even when updated from a positive definite matrix. Therefore we propose the memoryless SR1 method, which is updated from a positive scaled of the identity, where the scaling factor is derived in such a way that positive definiteness of the updating matrices are preserved and at the same time improves the condition of the scaled memoryless SR1 update. Under very mild conditions it is shown that, for strictly convex objective functions, the method is globally convergent with a linear rate of convergence. Numerical results show that the optimally scaled memoryless SR1 method is very encouraging.  相似文献   
326.
Bentonite clay is a vital ingredient of drilling mud. The time-dependent and high shear thinning yield stress behaviour of drilling mud is essential for maintaining wellbore stability and to remove cuttings, cool and clean the drill bit of debris. As-prepared 3, 5 and 7 wt.% bentonite clay slurries displayed time-dependent behaviour where the yield stress (measured after quick stirring) decreased with time of rest. An equilibrium value is reached after 24 h. Despite the low solids concentration, the yield stress is already relatively high and is displayed at all pH level. The yield stress is maximum at pH 2 and minimum at pH ∼ 7. This yield stress is due to the formation of gel structure by the swelling clay particles. However the addition of phosphate additives such as (PO3)19 − , (P3O10)5 −  and (P2O7)4 −  completely dispersed the clay slurries at pH above 6. At pH below 6, yield stress is still present but is 3-folds smaller than that of the pure bentonite slurry. With phosphate additives, the magnitude of the critical zeta potential at the complete dispersion pH is ca 48 mV. However for the pure bentonite, the slurry remained flocculated at zeta potential of >50 mV in magnitude. Interestingly, (P2O7)4 −  anions is more effective than the other two phosphate additives in reducing the yield stress at low pH, ∼ 2.0.  相似文献   
327.
We describe a new method of fabricating large-area, highly scalable, "hybrid" superhydrophobic surfaces on silicon (Si) substrates with tunable, spatially selective adhesion behavior by controlling the morphologies of Si nanowire arrays. Gold (Au) nanoparticles were deposited on Si by glancing-angle deposition, followed by metal-assisted chemical etching of Si to form Si nanowire arrays. These surfaces were chemically modified and rendered hydrophobic by fluorosilane deposition. Au nanoparticles with different size distributions resulted in the synthesis of Si nanowires with very different morphologies (i.e., clumped and straight nanowire surfaces). The difference in nanowire morphology is attributed to capillary force-induced nanocohesion, which is due to the difference in nanowire porosity. The clumped nanowire surface demonstrated the lotus effect, and the straighter nanowires demonstrated the ability to pin water droplets while maintaining large contact angles (i.e., the petal effect). The high contact angles in both cases are explained by invoking the Cassie-Baxter wetting state. The high adhesion behavior of the straight nanowire surface may be explained by a combination of attractive van der Waals forces and capillary adhesion. We demonstrate the spatial patterning of both low- and high-adhesion superhydrophobicity on the same substrate by the simultaneous synthesis of clumped and straight silicon nanowires. The demonstration of hybrid superhydrophobic surfaces with spatially selective, tunable adhesion behavior on single substrates paves the way for future applications in microfluidic channels, substrates for biologically and chemically based analysis and detection where it is necessary to analyze a particular droplet in a defined location on a surface, and as a platform to study in situ chemical mixing and interfacial reactions of liquid pearls.  相似文献   
328.
We report the formation and characterization of stable dispersions of hybrid nanoparticles in solution formed via stereocomplexation of enantiomeric poly(lactide) hybrid star polymers. The hybrid starlike polymers, having polyhedral oligomeric silsesquioxane (POSS) nanocages as the core and either poly(L-lactide) (PLLA) or poly(D-lactide) (PDLA) as the arms, are synthesized via ring-opening polymerization of lactide using octafunctional POSS as the macroinitiator. In the solid state, differential scanning calorimetry and wide-angle X-ray scattering measurements confirmed the formation of the stereocomplex in the mixture of POSS-star-PLLA and POSS-star-PDLA (50:50, wt %). In a solution of the same mixture in tetrahydrofuran (THF), sterocomplexation leads to formation of hybrid nanaoparticles. Detailed accounts of the nanoparticle formation and influence of aging and concentration have been presented. It was observed that at low concentration the stereocomplexed nanaoparticles remain stable over 45 days and are not sensitive to dilution, suggesting the formation of a stable hybrid nanoparticle dispersion in solution. In contrast, the aggregates of the individual POSS-star-PLLA or POSS-star-PDLA in THF, formed via weak solvophobic interactions, tended to disintegrate into smaller aggregates on dilution. Exploiting the PLLA-PDLA stereocomplexation with an appropriate molecular design can be a versatile route to develop stable organic/inorganic hybrid nanoparticle dispersions.  相似文献   
329.
This article provides a response to a recent brief communication ‘Comments on the effect of liquid layering on the thermal conductivity of nanofluids’ by Doroodchi et al. in J Nanopart Res 11(6):1501–1507, 2009. It provides an opportunity for us to clarify the fundamental differences between the models of Yu and Choi (2003) and Leong et al. (2006) mentioned in the communication, followed by an explanation of the development of Leong et al.’s model. While we re-affirm that the model of Leong et al. (2006) was developed based on the right methodology, appropriate boundary conditions and mathematical basis and is therefore valid, there are at least three incorrect equations in Doroodchi et al.’s communication which raise serious doubts on their results calculated from the above models. Hence, the comments by Doroodchi et al. (2009) about the model of Leong et al. (2006) are not well-justified.  相似文献   
330.
Digital quantum computers have the potential to simulate complex quantum systems. The spin-boson model is one of such systems, used in disparate physical domains. Importantly, in a number of setups, the spin-boson model is open, i.e., the system is in contact with an external environment which can, for instance, cause the decay of the spin state. Here, we study how to simulate such open quantum dynamics in a digital quantum computer, for which we use an IBM hardware. We consider in particular how accurate different implementations of the evolution result as a function of the level of noise in the hardware and of the parameters of the open dynamics. For the regimes studied, we show that the key aspect is to simulate the unitary portion of the dynamics, while the dissipative part can lead to a more noise-resistant simulation. We consider both a single spin coupled to a harmonic oscillator, and also two spins coupled to the oscillator. In the latter case, we show that it is possible to simulate the emergence of correlations between the spins via the oscillator.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号