首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   707篇
  免费   53篇
  国内免费   3篇
化学   605篇
晶体学   6篇
力学   16篇
数学   34篇
物理学   102篇
  2023年   7篇
  2022年   16篇
  2021年   42篇
  2020年   25篇
  2019年   33篇
  2018年   14篇
  2017年   12篇
  2016年   30篇
  2015年   20篇
  2014年   30篇
  2013年   25篇
  2012年   56篇
  2011年   57篇
  2010年   17篇
  2009年   28篇
  2008年   53篇
  2007年   48篇
  2006年   47篇
  2005年   38篇
  2004年   20篇
  2003年   25篇
  2002年   18篇
  2001年   8篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1996年   9篇
  1994年   6篇
  1993年   3篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1988年   9篇
  1987年   5篇
  1985年   5篇
  1984年   5篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1970年   2篇
  1969年   1篇
  1926年   1篇
  1898年   1篇
  1888年   4篇
排序方式: 共有763条查询结果,搜索用时 203 毫秒
141.
Four compounds derived from 2‐aminothiazole and 2‐amino‐2‐thiazoline were prepared by coupling the respective bases with the acid chlorides of either 3‐ or 4‐(N,N‐dimethylamino)benzoic acid. Products were identified using infrared spectroscopy, 1H NMR spectroscopy and electrospray mass spectroscopy and in two cases by single‐crystal X‐ray diffraction. Of the four, N‐(thiazol‐2‐yl)‐3‐(N,N‐dimethylamino)‐benzamide (1), N‐(thiazolin‐2‐yl)‐4‐(N,N‐dimethylamino)benzamide (2), N‐(thiazolin‐2‐yl)‐3‐(N,N‐dimethylamino) benzamide (3) and N‐(thiazolin‐2‐yl)‐4‐(N,N‐dimethylamino)benzamide (4), the hydrochloride salts of compounds 3 and 4 showed anti‐inflammatory activity across a concentration range of 10?2?5 × 10?4 M while 3 (at a concentration of 10?5 M) was found to have no adverse effect on myocardial function. The X‐ray crystal structure of 2 and the 1:1 adduct structure of 3 with 3‐(N,N‐dimethylamino)benzoic acid are reported.  相似文献   
142.
This paper constitutes the second part of our experimental study of the thermo-mechanical behavior of superelastic NiTi shape memory alloy cables. Part I introduced the fundamental, room temperature, tensile responses of two cable designs (7 × 7 right regular lay, and 1 × 27 alternating lay). In Part II, each cable behavior is studied further by breaking down the response into the contributions of its hierarchical subcomponents. Selected wire strands were extracted from the two cable constructions, and their quasi-static tension responses were measured using the same experimental setup of Part I. Consistent with the shallow wire helix angles in the 7 × 7 construction, the force–elongation responses of the core wire, 1 × 7 core strand and full 7 × 7 cable were similar on a normalized basis, with only a slight decrease in transformation force plateaus and slight increase in plateau strains in this specimen sequence. By contrast, each successive 1 × 27 component (1 × 6 core strand, 1 × 15 strand, and full cable) included an additional outer layer of wires with a larger number of wires, greater helix radius, and deeper helix angle, so the normalized axial load responses became significantly more compliant. Each specimen in the sequence also exhibited progressively larger strains at failure, reaching 40% strain in the full 1 × 27 cable.Stress-induced phase transformations involved localized strain/temperature and front propagation in all of the tested 7 × 7 components but none of the 1 × 27 components aside from the 1 × 27 core wire. Stereo digital image correlation measurements revealed finer features within a global transformation front of the 1 × 7 core strand than the 7 × 7 cable, consisting of an staggered pattern of individual wire fronts that moved in lock-step during elongation. Although the 1 × 27 multi-layer strands exhibited temperature/strain localizations in a distributed pattern during transformations, the localizations did not propagate and their cause was traced back to contact indentations (stress concentrations) arising from the cable’s fabrication. The normalized axial torque responses of the multi-layer 1 × 27 components during transformation were distinctly non-monotonic and complex, due to the alternating handedness of the layers. Force and torque contributions of individual wire layers were deduced by subtracting 1 × 27 component responses, which helped to clarify the transformation kinetics within each layer and explain the unusual force and torque undulations seen in the 1 × 27 cable response of Part I.  相似文献   
143.
Electrophilic trisubstituted ethylenes, ring-disubstituted butyl 2-cyano-3-phenyl-2-propenoates, RPhCH?C(CN)CO2C4H9 (where R is 2-fluoro-5-methoxy, 2-fluoro-6-methoxy, 3-fluoro-4-methoxy, 4-fluoro-3-methoxy, 5-fluoro-2-methoxy, 3-fluoro-2-methyl, 3-fluoro-4-methyl, 4-fluoro-2-methyl, 4-fluoro-3-methyl, 5-fluoro-2-methyl were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-disubstituted benzaldehydes and butyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C-NMR. All the ethylenes were copoly-merized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H and 13C-NMR. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (1.2–3.5% wt.), which then decomposed in the 500–800°C range.  相似文献   
144.
Standard practice in electron beam-induced deposition (EBID) is to use precursors designed for thermal processes, such as chemical vapor deposition (CVD). However, organometallic precursors that yield pure metal deposits in CVD often create EBID deposits with high levels of organic contamination. This contamination negatively impacts the deposit’s properties (e.g., by increasing resistivity or decreasing catalytic activity) and severely limits the range of potential applications for metal-containing EBID nanostructures. To provide the information needed for the rational design of precursors specifically for EBID, we have employed an ultra-high vacuum (UHV) surface science approach to identify the elementary reactions of organometallic precursors during EBID. These UHV studies have demonstrated that the initial electron-induced deposition of the surface-bound organometallic precursors proceeds through desorption of one or more of the ligands present in the parent compound. In specific cases, this deposition step has been shown to proceed via dissociative electron attachment, involving low-energy secondary electrons generated by the interaction of the primary beam with the substrate. Electron beam processing of the surface-bound species produced in the initial deposition event usually causes decomposition of the residual ligands, creating nonvolatile fragments. This process is believed to be responsible for a significant fraction of the organic contaminants typically observed in EBID nanostructures. A few ligands (e.g., halogens) can, however, desorb during electron beam processing while other ligands (e.g., PF3, CO) can thermally desorb if elevated substrate temperatures are used during deposition. Using these general guidelines for reactivity, we propose some design strategies for EBID precursors. The ultimate goal is to minimize organic contamination and thus overcome the key bottleneck for fabrication of relatively pure EBID nanostructures.  相似文献   
145.
A chemoselective, mild, and versatile method for performing postsynthetic modifications of peptide sequences is described. It requires only activated molecular sieves in the presence of an alkyl halide in order to N-alkylate lysine side chains. This reaction is fully compatible with most of the peptide functionalities, discriminates the reactivity of differently protected lysines, and proceeds in good yield. The mild conditions employed were further proved by performing the N-alkylation of a peptide containing a disulfide bridge.  相似文献   
146.
We present here a simple method for the bottom-up fabrication of microporous organic particles with surface areas in the range 500-1000 m(2) g(-1). The method involves chiral recognition between prefabricated, intrinsically porous organic cage molecules that precipitate spontaneously upon mixing in solution. Fine control over particle size from 50 nm to 1 μm can be achieved by varying the mixing temperature or the rate of mixing. No surfactants or templates are required, and the resulting organic dispersions are stable for months. In this method, the covalent synthesis of the cage modules can be separated from their solution processing into particles because the modules can be dissolved in common solvents. This allows a "mix and match" approach to porous organic particles. The marked solubility change that occurs upon mixing cages with opposite chirality is rationalized by density functional theory calculations that suggest favorable intermolecular interactions for heterochiral cage pairings. The important contribution of molecular disorder to porosity and surface area is highlighted. In one case, a purposefully amorphized sample has more than twice the surface area of its crystalline analogue.  相似文献   
147.
148.
In order to better understand the volatilization process for ionic liquids, the vapor evolved from heating the ionic liquid 1-ethyl-3-methylimidazolium bromide (EMIM(+)Br(-)) was analyzed via tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry (VUV-PI-TOFMS) and thermogravimetric analysis mass spectrometry (TGA-MS). For this ionic liquid, the experimental results indicate that vaporization takes place via the evolution of alkyl bromides and alkylimidazoles, presumably through alkyl abstraction via an S(N)2 type mechanism, and that vaporization of intact ion pairs or the formation of carbenes is negligible. Activation enthalpies for the formation of the methyl and ethyl bromides were evaluated experimentally, ΔH(?)(CH(3)Br) = 116.1 ± 6.6 kJ/mol and ΔH(?)(CH(3)CH(2)Br) = 122.9 ± 7.2 kJ/mol, and the results are found to be in agreement with calculated values for the S(N)2 reactions. Comparisons of product photoionization efficiency (PIE) curves with literature data are in good agreement, and ab initio thermodynamics calculations are presented as further evidence for the proposed thermal decomposition mechanism. Estimates for the enthalpy of vaporization of EMIM(+)Br(-) and, by comparison, 1-butyl-3-methylimidazolium bromide (BMIM(+)Br(-)) from molecular dynamics calculations and their gas phase enthalpies of formation obtained by G4 calculations yield estimates for the ionic liquids' enthalpies of formation in the liquid phase: ΔH(vap)(298 K) (EMIM(+)Br(-)) = 168 ± 20 kJ/mol, ΔH(f,?gas)(298 K) (EMIM(+)Br(-)) = 38.4 ± 10 kJ/mol, ΔH(f,?liq)(298 K) (EMIM(+)Br(-)) = -130 ± 22 kJ/mol, ΔH(f,?gas)(298 K) (BMIM(+)Br(-)) = -5.6 ± 10 kJ/mol, and ΔH(f,?liq)(298 K) (BMIM(+)Br(-)) = -180 ± 20 kJ/mol.  相似文献   
149.
The morphologies of deposited C60 on a copper substrate from a C60-benzene solution were evaluated by using Scanning Electron Microscopy. It was found that the forms of deposited C60 were dependent on the aggregation of C60 in its original solution. During natural vaporization of benzene solution on a copper substrate, independent C60 molecules in the solution assembled into crystal C60 on the substrate, whereas the aggregates of C60 in the solution were remained as amorphous C60 particles on the substrate. However, if spinning was employed during vaporizing solvent, the C60 aggregates were destroyed, leading to the formation of crystal C60. Furthermore, the speed of spinning a substrate can tune the size and shape of deposited C60.  相似文献   
150.
DNA barcodes are short, unique ssDNA primers that "mark" individual biomolecules. To gain better understanding of biophysical parameters constraining primer-dimer formation between primers that incorporate barcode sequences, we have developed a capillary electrophoresis method that utilizes drag-tag-DNA conjugates to quantify dimerization risk between primer-barcode pairs. Results obtained with this unique free-solution conjugate electrophoresis approach are useful as quantitatively precise input data to parameterize computation models of dimerization risk. A set of fluorescently labeled, model primer-barcode conjugates were designed with complementary regions of differing lengths to quantify heterodimerization as a function of temperature. Primer-dimer cases comprised two 30-mer primers, one of which was covalently conjugated to a lab-made, chemically synthesized poly-N-methoxyethylglycine drag-tag, which reduced electrophoretic mobility of ssDNA to distinguish it from ds primer-dimers. The drag-tags also provided a shift in mobility for the dsDNA species, which allowed us to quantitate primer-dimer formation. In the experimental studies, pairs of oligonucleotide primer barcodes with fully or partially complementary sequences were annealed, and then separated by free-solution conjugate CE at different temperatures, to assess effects on primer-dimer formation. When less than 30 out of 30 base-pairs were bonded, dimerization was inversely correlated to temperature. Dimerization occurred when more than 15 consecutive base-pairs formed, yet non-consecutive base-pairs did not create stable dimers even when 20 out of 30 possible base-pairs bonded. The use of free-solution electrophoresis in combination with a peptoid drag-tag and different fluorophores enabled precise separation of short DNA fragments to establish a new mobility shift assay for detection of primer-dimer formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号