首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245974篇
  免费   3367篇
  国内免费   1034篇
化学   116704篇
晶体学   3006篇
力学   12792篇
综合类   10篇
数学   51159篇
物理学   66704篇
  2020年   1272篇
  2018年   11358篇
  2017年   11100篇
  2016年   8299篇
  2015年   2728篇
  2014年   2689篇
  2013年   7301篇
  2012年   9091篇
  2011年   16722篇
  2010年   9668篇
  2009年   9565篇
  2008年   12333篇
  2007年   14417篇
  2006年   6217篇
  2005年   7056篇
  2004年   6511篇
  2003年   6327篇
  2002年   5153篇
  2001年   4791篇
  2000年   3883篇
  1999年   2917篇
  1998年   2582篇
  1997年   2515篇
  1996年   2635篇
  1995年   2463篇
  1994年   2242篇
  1993年   2277篇
  1992年   2496篇
  1991年   2313篇
  1990年   2176篇
  1989年   2196篇
  1988年   2173篇
  1987年   2162篇
  1986年   2032篇
  1985年   2776篇
  1984年   2841篇
  1983年   2369篇
  1982年   2738篇
  1981年   2521篇
  1980年   2578篇
  1979年   2549篇
  1978年   2662篇
  1977年   2517篇
  1976年   2529篇
  1975年   2426篇
  1974年   2298篇
  1973年   2436篇
  1972年   1479篇
  1968年   1253篇
  1967年   1319篇
排序方式: 共有10000条查询结果,搜索用时 546 毫秒
131.
132.
Dual fractional cutting plane algorithms, in which cutting planes are used to iteratively tighten a linear relaxation of an integer program, are well-known and form the basis of the highly successful branch-and-cut method. It is rather less well-known that various primal cutting plane algorithms were developed in the 1960s, for example by Young. In a primal algorithm, the main role of the cutting planes is to enable a feasible solution to the original problem to be improved. Research on these algorithms has been almost non-existent.  In this paper we argue for a re-examination of these primal methods. We describe a new primal algorithm for pure 0-1 problems based on strong valid inequalities and give some encouraging computational results. Possible extensions to the case of general mixed-integer programs are also discussed.  相似文献   
133.
134.
We study the recent construction of subfactors by Rehren which generalizes the Longo–Rehren subfactors. We prove that if we apply this construction to a non-degenerately braided subfactor NM and α±-induction, then the resulting subfactor is dual to the Longo–Rehren subfactor MM oppR arising from the entire system of irreducible endomorphisms of M resulting from αplusmn;-induction. As a corollary, we solve a problem on existence of braiding raised by Rehren negatively. Furthermore, we generalize our previous study with Longo and Müger on multi-interval subfactors arising from a completely rational conformal net of factors on S 1 to a net of subfactors and show that the (generalized) Longo–Rehren subfactors and α-induction naturally appear in this context. Received: 11 September 2001 / Accepted: 7 October 2001  相似文献   
135.
136.
We consider complete ideals supported on finite sequences of infinitely near points, in regular local rings with dimensions greater than two. We study properties of factorizations in Lipman special *-simple complete ideals. We relate it to a type of proximity, linear proximity, of the points, and give conditions in order to have unique factorization. Several examples are presented. Received: 2 February 2000 / in final form: 14 March 2001 / Published online: 18 January 2002  相似文献   
137.
138.
We call a one-way infinite word w over a finite alphabet (ρ,l)-repetitive if all long enough prefixes of w contain as a suffix a ρth power (or more generally a repetition of order ρ) of a word of length at most l. We show that each (2,4)-repetitive word is ultimately periodic, as well as that there exist continuum many, and hence also nonultimately periodic, (2,5)-repetitive words. Further, we characterize nonultimately periodic (2,5)-repetitive words both structurally and algebraically.  相似文献   
139.
140.
We consider Ising-spin systems starting from an initial Gibbs measure ν and evolving under a spin-flip dynamics towards a reversible Gibbs measure μ≠ν. Both ν and μ are assumed to have a translation-invariant finite-range interaction. We study the Gibbsian character of the measure νS(t) at time t and show the following: (1) For all ν and μ, νS(t) is Gibbs for small t. (2) If both ν and μ have a high or infinite temperature, then νS(t) is Gibbs for all t > 0. (3) If ν has a low non-zero temperature and a zero magnetic field and μ has a high or infinite temperature, then νS(t) is Gibbs for small t and non-Gibbs for large t. (4) If ν has a low non-zero temperature and a non-zero magnetic field and μ has a high or infinite temperature, then νS(t) is Gibbs for small t, non-Gibbs for intermediate t, and Gibbs for large t. The regime where μ has a low or zero temperature and t is not small remains open. This regime presumably allows for many different scenarios. Received: 26 April 2001 / Accepted: 10 October 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号