首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   27篇
化学   308篇
晶体学   2篇
力学   3篇
数学   21篇
物理学   46篇
  2024年   2篇
  2023年   4篇
  2022年   9篇
  2021年   16篇
  2020年   17篇
  2019年   24篇
  2018年   8篇
  2017年   7篇
  2016年   28篇
  2015年   10篇
  2014年   10篇
  2013年   15篇
  2012年   34篇
  2011年   28篇
  2010年   16篇
  2009年   9篇
  2008年   15篇
  2007年   21篇
  2006年   20篇
  2005年   9篇
  2004年   8篇
  2003年   8篇
  2002年   6篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有380条查询结果,搜索用时 15 毫秒
121.
122.
123.
Identifying (bio)catalysts displaying high enantio-/stereoselectivity is a fundamental prerequisite for the advancement of asymmetric catalysis. Herein, a high-throughput, stereoselective screening assay is reported that gives information on enantioselectivity, stereopreference and activity as showcased for peroxygenase-catalyzed hydroxylation. The assay is based on spectrophotometric analysis of the simultaneous formation of NAD(P)H from the alcohol dehydrogenase catalyzed enantioselective oxidation of the sec-alcohol product formed in the peroxygenase reaction. The assay was applied to investigate a library comprising 44 unspecific peroxygenases (UPOs) containing 25 UPOs not reported yet. Thereby, previously non-described wild-type UPOs displaying (S)- as well as (R)-stereoselectivity for the hydroxylation of representative model substrates were identified, reaching up to 98 % ee for the (R)- and 94 % ee for the (S)-enantiomer. Homology models with concomitant docking studies indicated the structural reason for the observed complementary stereopreference.  相似文献   
124.
Enzymatic degradation and recycling can reduce the environmental impact of plastics. Despite decades of research, no enzymes for the efficient hydrolysis of polyurethanes have been reported. Whereas the hydrolysis of the ester bonds in polyester-polyurethanes by cutinases is known, the urethane bonds in polyether-polyurethanes have remained inaccessible to biocatalytic hydrolysis. Here we report the discovery of urethanases from a metagenome library constructed from soil that had been exposed to polyurethane waste for many years. We then demonstrate the use of a urethanase in a chemoenzymatic process for polyurethane foam recycling. The urethanase hydrolyses low molecular weight dicarbamates resulting from chemical glycolysis of polyether-polyurethane foam, making this strategy broadly applicable to diverse polyether-polyurethane wastes.  相似文献   
125.
A simple high-performance liquid chromatographic (HPLC) method was developed for the simultaneous determination of cefepime and cefazolin in human plasma and dialysate. For component separation, the method utilized a C18 column with an aqueous mobile phase of dibasic potassium hydrogen phosphate (pH 7.0) and methanol gradient at a flow rate of 1 mL min−1. The method demonstrated linearity from 2.0 to 100.0 μg mL−1 (r > 0.999) with detection limit of 1 μg mL−1 for both cefepime and cefazolin. The method was utilized for evaluation of plasma and dialysate samples in a clinical study evaluating the dialyzer clearance of cefepime and cefazolin using high-flux hemodialysis with varying blood flow rates in chronic kidney failure patients undergoing hemodialysis and peritoneal dialysis treatment.  相似文献   
126.
From studies using different experimental techniques employed to determine the presence of aggregates e.g. isothermal titration calorimetry, surface tension, electrical conductivity, UV–Vis spectrophotometry, dynamic and static light scattering, it is clearly demonstrated that the compound [Cu(4, 4′-dimethyl-2, 2′-bipyridine)(acetylacetonato)H2O]NO3 (Casiopeína III-ia), promising member of a family of new generation compounds for cancer treatment, is able to auto associate in aqueous media. Physicochemical properties associated with the formation of the aggregates were determined in pure water and in phosphate buffer media in order to simulate physiological conditions. From isothermal titration calorimetry and electrical conductivity measurements we calculated the dissociation constant of the aggregates, K D . For pure water the values obtained in both techniques are 2.73 × 10?4 and 5.93 × 10?4 M respectively while for the buffer media we obtained 4.61 × 10?4 and 1.57 × 10?3 M. The enthalpy of dissociation, ?H D , calculated from the calorimetric data shows that the presence of the phosphate ions has an energetic effect on the aggregate stability since in pure water a value of 18.79 kJ mol?1 was obtained in comparison with the buffer media where a value 4 times bigger was found (70.48 kJ mol?1). With the data collected from these techniques the number of monomers calculated which participate in the formation of the aggregates is around two. From our surface tension, electrical conductivity and UV–Vis spectrophotometry measurements the critical aggregate concentration, cac, was determined. For each technique specific concentration ranges were obtained but we can summarize that the cac in pure water is between 3 and 3.5 mM and for the buffer media is between 3.5 and 4 mM. Dynamic light scattering measurements provide us with the hydrodynamic diameter of the aggregates and from static light scattering measurements we determined the molecular weight of the Casiopeína III-ia aggregates to be of 1000.015 g mol?1 which is two times the molecular weight of the Casiopeína III-ia molecule. This value is in agreement with the number of monomers which participate in the formation of the aggregates obtained from isothermal titration calorimetry and electrical conductivity data analysis.  相似文献   
127.
Monoclonal antibody (MAb) variants differing by one or two C-terminal lysine residues can be separated by cation-exchange chromatography due to the difference in their charge distribution. The adsorption of the three MAb variants on a weak cation-exchange resin was characterized using directly the raw mixture in spite of the presence of some impurities. The effects of both, pH and eluent salt concentration, on the adsorption isotherm were investigated. Under certain experimental conditions distorted peak shapes and even peak doubling for single variant injections were obtained, in addition to unexpectedly long retention times. These observations were explained based on equilibrium theory. The separation of the MAb variants was designed for an isocratic and a linear salt gradient operation. The corresponding optimal values of pH and salt concentration were determined. The use of salt gradients not only allows reducing the process time and increasing enrichment of the variants, but also leads to some loss in purity. A baseline separation could be obtained under isocratic and strongly adsorbing conditions at pH 6.3. A lumped kinetic model and a procedure for estimating the corresponding parameters were developed and validated by comparison with experimental elution chromatograms in a wide range of operating conditions.  相似文献   
128.
An enzyme immobilized on a mesoporous silica nanoparticle can serve as a multiple catalyst for the synthesis of industrially useful chemicals. In this work, MCM-41 nanoparticles were coated with polyethylenimine (MCM-41@PEI) and further modified by chelation of divalent metal ions (M = Co2+, Cu2+, or Pd2+) to produce metal-chelated silica nanoparticles (MCM-41@PEI-M). Thermomyces lanuginosa lipase (TLL) was immobilized onto MCM-41, MCM-41@PEI, and MCM-41@PEI-M by physical adsorption. Maximum immobilization yield and efficiency of 75 ± 3.5 and 65 ± 2.7% were obtained for MCM@PEI-Co, respectively. The highest biocatalytic activity at extremely acidic and basic pH (pH = 3 and 10) values were achieved for MCM-PEI-Co and MCM-PEI-Cu, respectively. Optimum enzymatic activity was observed for MCM-41@PEI-Co at 75 °C, while immobilized lipase on the Co-chelated support retained 70% of its initial activity after 14 days of storage at room temperature. Due to its efficient catalytic performance, MCM-41@PEI-Co was selected for the synthesis of ethyl valerate in the presence of valeric acid and ethanol. The enzymatic esterification yield for immobilized lipase onto MCM-41@PEI-Co was 60 and 53%, respectively, after 24 h of incubation in n-hexane and dimethyl sulfoxide media.
Graphical Abstract Divalent metal chelated polyethylenimine coated MCM-41 (MCM-41@PEI-M) was used for immobilization of Thermomyces lanuginosa lipase catalyzing green apple flavor preparation
  相似文献   
129.
Agp1 is a prototypical bacterial phytochrome from Agrobacterium fabrum harboring a biliverdin cofactor which reversibly photoconverts between a red‐light‐absorbing (Pr) and a far‐red‐light‐absorbing (Pfr) states. The reaction mechanism involves the isomerization of the bilin‐chromophore followed by large structural changes of the protein matrix that are coupled to protonation dynamics at the chromophore binding site. Histidines His250 and His280 participate in this process. Although the three‐dimensional structure of Agp1 has been solved at high resolution, the precise position of hydrogen atoms and protonation pattern in the chromophore binding pocket has not been investigated yet. Here, we present protonated structure models of Agp1 in the Pr state involving appropriately placed hydrogen atoms that were generated by hybrid quantum mechanics/molecular mechanics‐ and electrostatic calculations and validated against experimental structural‐ and spectroscopic data. Although the effect of histidine protonation on the vibrational spectra is weak, our results favor charge neutral H250 and H280 both protonated at Nε. However, a neutral H250 with a proton at Nε and a cationic H280 may also be possible. Furthermore, the present QM/MM calculations of IR and Raman spectra of Agp1 containing isotope‐labeled BV provide a detailed vibrational assignment of the biliverdin modes in the fingerprint region.  相似文献   
130.
Time-resolved IR absorption spectroscopy is used to investigate substitution of the cyclohexane (CyH) molecule of the photolytically generated alkane-solvated transient intermediate Cr(CO)5(CyH) by heterocyclic ligands C4HnE (n=4, 8; E=O, NH, S). From the concentration and temperature dependences of the pseudo-first order rate constants, we obtain activation parameters for the reactions, and find that they are consistent with an associative (A) or interchange (I) mechanism. As was the case with ligand substitution reactions at W(CO)5(CyH), a ligand's reactivity depends both on its electron-donating ability and on its polarizability. We also find that for a reaction with a given DeltaH, the activation entropy is higher for reaction of Cr(CO)5(CyH) than it is for reaction of W(CO)5(CyH). Comparison of the present results with ligand substitution reactions of W(CO)5(CyH), CpMn(CO)2(CyH), and Cr(CO)5(n-heptane) indicates that for ligand substitution reactions at alkane-solvated transition-metal intermediates, the solvent's effect upon the reaction rate is primarily entropic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号