首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   4篇
化学   34篇
物理学   6篇
  2024年   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   5篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   5篇
排序方式: 共有40条查询结果,搜索用时 187 毫秒
11.
Active phloroglucinol constituents of Hypericum perforatum (St. John's wort) extracts, hyperforin and adhyperforin, have been studied following ion activation using tandem mass spectrometry (MS/MS) and complemented by accurate mass measurements. These two compounds were readily analyzed as protonated and deprotonated molecules with electrospray ionization. MS/MS and MS3 data from a quadrupole-linear ion trap tandem mass spectrometer were employed to elucidate fragmentation pathways. Fourier transform ion cyclotron resonance measurements afforded excellent mass accuracies for the confirmation of elemental formulae of product ions formed via infrared multiphoton dissociation and sustained off-resonance irradiation collision-induced dissociation. Fragmentation schemes have been devised for the dissociation of hyperforin and adhyperforin in negative and positive ion modes. This information is expected to be especially valuable for the characterization of related compounds, such as degradation products, metabolites and novel synthetic analogs of hyperforin.  相似文献   
12.
We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.
Graphical Abstract ?
  相似文献   
13.
An organic dispersion of 9–15 nm size stable dysprosium oxide incorporated zinc oxide nanocomposites exhibiting luminescence in the visible region has been synthesised by a wet chemical precipitation technique at room temperature. Tetraethoxysilane TEOS [(C2H5O)4Si], (3-aminopropyl) trimethoxysilane (APTS) and a 1:1 mixture of TEOS–APTS have been used as capping agents to control the particle size as well as to achieve uniform dispersion of composite nanoparticles in methanol medium. X-ray diffractometer (XRD) analysis reveals the formation phase of amino-functionalised colloidal dysprosium oxide incorporated ZnO composite nanoparticles to be of zincite structure. The Transmission Electron Microscopy (TEM) images show that the particles are spheroids in shape, having average crystalline sizes ranging from 9 to 15 nm. The photoluminescence (PL) observed in these composites has been attributed to the presence of near band edge excitonic emission and existence of defect centres. The time correlated single photon counting studies of the composite nanoparticles exhibited three decay pathways. The enhanced PL emission intensity of solid state fluorescence spectra of samples is attributed to the absence of vibrational relaxation process.  相似文献   
14.
Mass defect is defined as the difference between a compound's exact mass and its nominal mass. This concept has been increasingly used in mass spectrometry over the years, mainly due to the growing use of high resolution mass spectrometers capable of exact mass measurements in many application areas in analytical and bioanalytical chemistry. This article is meant as an introduction to the different uses of mass defect in applications using modern MS instrumentation. Visualizing complex mass spectra may be simplified with the concept of Kendrick mass by plotting nominal mass as a function of Kendrick mass defect, based on hydrocarbons subunits, as well as slight variations on this theme. Mass defect filtering of complex MS data has been used for selectively detecting compounds of interest, including drugs and their metabolites or endogenous compounds such as peptides and small molecule metabolites. Several strategies have been applied for labeling analytes with reagents containing unique mass defect features, thus shifting molecules into a less noisy area in the mass spectrum, thus increasing their detectability, especially in the area of proteomics. All these concepts will be covered to introduce the interested reader to the plethora of possibilities of mass defect analysis of high resolution mass spectra. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
15.
This study offers a unique insight into the mass accuracy and resolving power requirements in MS/MS analyses of complex product ion spectra. In the examples presented here, accurate mass assignments were often difficult because of multiple isobaric interferences and centroid mass shifts. The question then arose whether the resolving power of a medium-resolution quadrupole time-of flight (QqTOF) is sufficient or high-resolution Fourier-transform ion cyclotron resonance (FT-ICR) is required for unambiguous assignments of elemental compositions. For the comparison, two paralytic shellfish poisons (PSP), saxitoxin (STX) and neosaxitoxin (NEO), with molecular weights of 299 and 315 g x mol(-1), respectively, were chosen because of the high peak density in their MS/MS spectra. The assessment of QqTOF collision-induced dissociation spectra and FT-ICR infrared multiphoton dissociation spectra revealed that several intrinsic dissociation pathways leading to isobaric fragment ions could not be resolved with the QqTOF instrument and required FT-ICR to distinguish very close mass differences. The second major source of interferences was M + 1 species originating from coactivated 13C12Cc-1 ion contributions of the protonated molecules of the PSPs. The problem in QqTOF MS results from internal mass calibration when the MH+ ions of analyte and mass calibrant are activated at the same time in the collision or trapping cell. Although FT-ICR MS readily resolved these interfering species, the QqTOF did not provide resolving power >20,000 (full width at half maximum) required to separate most isobaric species. We were able to develop a semi-internal QqTOF calibration technique that activated only the isolated 12C isotope species of the protonated molecules, thus reducing the M + 1 interferences significantly. In terms of overall automated elemental formulas assignment, FT-ICR MS achieved the first formula hit for 100% of the product ions, whereas the QqTOF MS hit rate was only 56 and 65% for STX and NEO product ions, respectively. External mass calibration from commercial FT-ICR and QqTOF instruments gave similar results.  相似文献   
16.
Ion activation methods for tandem mass spectrometry   总被引:7,自引:0,他引:7  
This tutorial presents the most common ion activation techniques employed in tandem mass spectrometry. In-source fragmentation and metastable ion decompositions, as well as the general theory of unimolecular dissociations of ions, are initially discussed. This is followed by tandem mass spectrometry, which implies that the activation of ions is distinct from the ionization step, and that the precursor and product ions are both characterized independently by their mass/charge ratios. In collision-induced dissociation (CID), activation of the selected ions occurs by collision(s) with neutral gas molecules in a collision cell. This experiment can be done at high (keV) collision energies, using tandem sector and time-of-flight instruments, or at low (eV range) energies, in tandem quadrupole and ion trapping instruments. It can be performed using either single or multiple collisions with a selected gas and each of these factors influences the distribution of internal energy that the activated ion will possess. While CID remains the most common ion activation technique employed in analytical laboratories today, several new methods have become increasingly useful for specific applications. More recent techniques are examined and their differences, advantages and disadvantages are described in comparison with CID. Collisional activation upon impact of precursor ions on solid surfaces, surface-induced dissociation (SID), is gaining importance as an alternative to gas targets and has been implemented in several different types of mass spectrometers. Furthermore, unique fragmentation mechanisms of multiply-charged species can be studied by electron-capture dissociation (ECD). The ECD technique has been recognized as an efficient means to study non-covalent interactions and to gain sequence information in proteomics applications. Trapping instruments, such as quadrupole ion traps and Fourier transform ion cyclotron resonance instruments, are particularly useful for the photoactivation of ions, specifically for fragmentation of precursor ions by infrared multiphoton dissociation (IRMPD). IRMPD is a non-selective activation method and usually yields rich fragmentation spectra. Lastly, blackbody infrared radiative dissociation is presented with a focus on determining activation energies and other important parameters for the characterization of fragmentation pathways. The individual methods are presented so as to facilitate the understanding of each mechanism of activation and their particular advantages and representative applications.  相似文献   
17.
Experiments are performed to develop a pulsed corona discharge system for the conversion ofmethane to hydrogen at atmospheric pressure (≌760 Torr) without using a catalyst. The corona dischargewas energized by 10-12 μs wide voltage pulses (≤7 kV) at a repetition rate of about 1.0-1.5 kHz. Theresidual gases were characterized by mass spectrometry. The conversion of methane is as high as 50.8% producing the 70% yield of hydrogen. The influences of argon on the discharge of methane were studied.This result could be useful for the mass production of hydrogen in both academic and industrial point ofview.  相似文献   
18.
Currently, everyone is facing significant difficulties with food scarcity. There may be several causes for this, but food loss is a well-known issue. Specifically, crop losses bring on by plant and leaf diseases during farming operations. Plant disease is typically identified visually or through laboratory testing, which delays detection and reduces crop yields by the time it is finished. The wide use of smartphones along with recent advancements in computer vision has made it viable to diagnose any ailment by applying machine learning techniques. Smartphone-assisted disease diagnosis is now a reality. In this study, a multi-Support Vector Machine (SVM) model is used to detect four different diseases as well as healthy conditions of plant leaves. Using 13 feature vectors for each input, a total of 2400 leaves representing four distinct classes (four varieties) have been used to train and test the model. The experimental results give an average accuracy of 91.25% for diseased leaves detection and 99% accuracy for healthy leaves detection.  相似文献   
19.
An analysis is reported of thickness-induced defects in amorphous GeSe2 thin films deposited by the vacuum evaporation technique. X-ray diffraction studies confirmed the amorphous nature of the thin films. Optical absorption measurements revealed an indirect transition with an energy gap that increases with film thickness. A blue shift in optical transmittance edges was observed in annealed GeSe2 thin films. The obtained lower values of Urbach energy (E U) indicate that as thickness increases more ordered films can be produced. Raman spectra suggest that annealing promotes corner-sharing GeSe4/2 tetrahedra and edge-sharing Ge2Se8/2 bi-tetrahedra bonding and leads to the reduction in disorder in bonding network, which is amply supported by the way of increase in band gap, increase in Tauc parameter (B 1/2) and reduction in E U from the analysis of transmittance spectra. Increasing the thickness promotes tetrahedral and bi-tetrahedral bonding through the reduction in bonding defects.  相似文献   
20.
Significant aggregation is observed in pyrene-modified zero- and first-generation polyamidoamine (PAMAM) dendrimers above their critical aggregation concentration (CAC, >10(-6) M). The pyrene units are attached to the dendrimer skeleton through imine bonds, which play a pivotal role in enhancing the aggregation propensity of the PAMAM dendrimers. Scanning electron microscopy studies suggest that pyrene-modified PAMAM dendrimers aggregate into doughnut-shaped assemblies. As a result of aggregation, the pyrene chromophores are pre-arranged in a face-to-face geometry in the ground state, and readily generate pyrene "static excimer" on photoexcitation. The static pyrene excimer emits with an unprecedented quantum yield of 0.62 ± 0.01 in dichloromethane, and also exhibits remarkable positive solvatochromism from 498 to 638 nm, which leads to the highest bathochromic shift for pyrene excimer emission in solution reported so far. Lippert-Mataga analysis of the system suggests that general and specific solvent effects play a crucial role in the positive solvatochromism exhibited by the system. Luminescence quenching studies on both monomer and aggregate systems were carried out in the presence of various metal ions, and the results imply that pyrene-modified PAMAM dendrimer can be utilized for selective detection of Hg ions in the presence of a wide variety of transition, alkali, and alkaline earth metal ions. This report presents the first dendrimer-based chromophoric system exhibiting positive solvatochromism over a range of 140 nm, and shows that pyrene-modified PAMAM dendrimers can be effectively utilized to generate wavelength-tunable emitting systems displaying bluish green, greenish yellow, and orange-red colors at room temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号