首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1218篇
  免费   153篇
  国内免费   65篇
化学   1026篇
晶体学   14篇
力学   40篇
综合类   2篇
数学   98篇
物理学   256篇
  2023年   17篇
  2022年   22篇
  2021年   32篇
  2020年   57篇
  2019年   52篇
  2018年   25篇
  2017年   16篇
  2016年   45篇
  2015年   51篇
  2014年   55篇
  2013年   79篇
  2012年   109篇
  2011年   120篇
  2010年   78篇
  2009年   52篇
  2008年   75篇
  2007年   49篇
  2006年   87篇
  2005年   62篇
  2004年   41篇
  2003年   46篇
  2002年   44篇
  2001年   28篇
  2000年   26篇
  1999年   31篇
  1998年   12篇
  1997年   13篇
  1996年   11篇
  1995年   14篇
  1994年   8篇
  1993年   7篇
  1992年   7篇
  1991年   20篇
  1990年   5篇
  1989年   5篇
  1988年   1篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
  1975年   4篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有1436条查询结果,搜索用时 156 毫秒
141.
The heat transfer process occurring in a condensing heat exchanger where noncondensible gases are dominant in volume is different from the condensation heat transfer of the water vapor containing small amount of noncondensible gases. In the process the mass transfer due to the vapor condensation contributes an important part to the total heat transfer. In this paper, the Colburn-Hougen method is introduced to analyze the heat and mass transfer process when the water vapor entrained in a gas stream condenses into water on the tube wall. The major influential factors of the convective-condensation heat transfer coefficient are found as follows: the partial pressure of the vapor p v , the temperature of the outer tube wall T w , the mixture temperature T g , Re and Pr. A new dimensionless number Ch, which is defined as condensation factor, has been proposed by dimensional analysis. In order to determine the relevant constants and investigate the convection-condensation heat and mass transfer characteristics of the condensing heat exchanger of a gas fired condensing boiler, a single row plain tube heat exchanger is designed, and experiments have been conducted with vapor-air mixture used to simulate flue gases. The experimental results show that the convection-condensation heat transfer coefficient is 1.52 times higher than that of the forced convection without condensation. Based on the experimental data, the normalized formula for convention-condensation heat transfer coefficient is obtained. A heat transfer area m2 - Ch condensation factor - c p specific heat at constant pressure, J/(kg·K) - G mass flux Kg/(m2·s) - h heat transfer coefficient W/(m2·K) - J J-factor - Nu Nusselt number - pa pressure - Pr Prandtl number - Q heat transfer rate - q heat flux W/m2 - r latent heat, kJ/kg - Re Reynolds number - Sc Schmidt number - T temperature, C or K - heat conductivity m W/(m·K) - density, kg·m3 - g gas - h moistened hot air - i interface - v vapor - w water  相似文献   
142.
The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas–liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10−3 m/s, and the wall shear stress below 103 Pa. It can be concluded that the alternate wall shear stress due to upward gas–liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.  相似文献   
143.
The forced convection heat transfer with water vapor condensation is studied both theoretically and experimentally when wet flue gas passes downwards through a bank of horizontal tubes. Extraordinarily, discussions are concentrated on the effect of water vapor condensation on forced convection heat transfer. In the experiments, the air–steam mixture is used to simulate the flue gas of a natural gas fired boiler, and the vapor mass fraction ranges from 3.2 to 12.8%. By theoretical analysis, a new dimensionless number defined as augmentation factor is derived to account for the effect of condensation of relatively small amount of water vapor on convection heat transfer, and a consequent correlation is proposed based on the experimental data to describe the combined convection–condensation heat transfer. Good agreement can be found between the values of the Nusselt number obtained from the experiments and calculated by the correlation. The maximum deviation is within ±6%. The experimental results also shows that the convection–condensation heat transfer coefficient increases with Reynolds number and bulk vapor mass fraction, and is 1∼3.5 times that of the forced convection without condensation.  相似文献   
144.
The purpose of this article is to prove the Hölder continuity up to the boundary of the displacement vector and the microrotation matrix for the quasistatic, rate-independent Armstrong–Frederick cyclic hardening plasticity model with Cosserat effects. This model is of non-monotone and non-associated type. In the case of two space dimensions we use the hole-filling technique of Widman and Morrey's Dirichlet growth theorem.  相似文献   
145.
A total of eight sediment cores with 50 cm length were taken in the Sabah and Sarawak coastal waters using a gravity corer in 2004 to estimate sedimentation rates using four mathematical models of CIC, Shukla-CIC, CRS and ADE. The average of sedimentation rate ranged from 0.24 to 0.48 cm year?1, which is calculated based on the vertical profile of 210Pbex in sediment core. The finding also showed that the sedimentation rates derived from four models were generally shown in good agreement with similar or comparable value at some stations. However, based on statistical analysis of paired sample t-test indicated that CIC model was the most accurate, reliable and suitable technique to determine the sedimentation rate in the coastal area.  相似文献   
146.
Qiu H  Che S 《Chemical Society reviews》2011,40(3):1259-1268
Fabrication of chiral materials and revealing the mechanisms involved in their formation are crucial issues in scientific research. The combination of cooperative self-assembly routes and the chiral templating process favors the formation of inorganic chiral materials with highly ordered mesostructures. This tutorial review highlights the recent research on chiral mesoporous silica (CMS) of hierarchical helical constructions transcribed from organic templates. The rules and mechanisms involved in the synthesis of CMS and related materials, especially the novel expression of chirality and imprinting of helical micellar superstructure by the functional groups immobilized on the mesopore surface, provide us with a deeper insight into the chiral self-assembly process and new strategies for the design and application of chiral materials. This review is addressed to researchers and students interested in chiral chemistry, supramolecular chemistry and mesoporous materials (53 references).  相似文献   
147.
148.
Anionic-cationic switchable monodisperse mesoporous silica nanoparticles were synthesized by one-pot amino and carboxylic acid bifunctionalization based on the self-assembly of the surfactant, two types of co-structure-directing agents containing amino and carboxylic groups, and silica sources. These nanoparticles revealed properties of dispersity and reversibility, with the advantage of the pH-responsive anionic-cationic/acid-base switchability. It was demonstrated that the extracted materials achieved reutilization and controllable dispersity in aqueous solution by adjusting the static electric power among the particles during the switching process.  相似文献   
149.
Molecular beam surface scattering and X-ray absorption spectroscopic experiments were employed to study the reaction of deuterium atoms with a pyrite, FeS(2) (100), surface and to investigate the electronic and geometric structures of the resulting Fe-S phases. Incident D atoms, produced by a radiofrequency plasma and expanded in an effusive beam, were directed at a pyrite surface held at various temperatures from ambient up to 200 °C. During exposure to the D-atom beam, D(2)S products were released with a thermal distribution of molecular speeds, indicating that the D atoms likely reacted in thermal equilibrium with the surface. The yield of D(2)S from the surface decreased approximately exponentially with exposure duration, suggesting that the surface accessible sulfur atoms were depleted, thus leaving an iron-rich surface. This conclusion is consistent with X-ray absorption measurements of the exposed surfaces, which indicated the formation of a layered structure, with elemental iron as the outermost layer on top of a formally Fe((I))-S phase as an intermediate layer and a formally Fe((II))-S(2) bulk pyrite layer at lower depths. The reduced Fe((I))-S phase is particularly remarkable because of its similarity to the catalytically active sites of small molecule metalloenzymes, such as FeFe-hydrogenases and MoFe-nitrogenases.  相似文献   
150.
Electric interface between neural tissue and electrode plays a significant role in the development of implanted devices for continuous monitoring and functional stimulation of central nervous system in terms of electroactivity, biocompatibility and long-term stability. To engineer an interface that possesses these merits, a polymeric hydrogel based on poly(ethylene glycol) diacrylate (PEGDA) and single-walled carbon nanotubes (SWNTs) were employed to fabricate a hybrid hydrogel via covalent anchoring strategy, i.e., self-assembly of cysteamine (Cys) followed by Michael addition between Cys and PEGDA. XPS characterization proves that the Cys molecules are linked to gold surface via the strong S-Au bond and that the PEGDA macromers are covalently bonded to Cys. FTIR spectra indicate the formation of hybrid hydrogel coating during photopolymerization. Electrochemical measurements using cyclic voltammetry (CV) and impedance spectrum clearly show the enhancement of electric properties to the hydrogel by the SWNTs. The charge transfer of the hybrid hydrogel-based electrode is quasi-reversible and charge transfer resistance decreases to the tenth of that of the pure hydrogel due to electron hopping along the SWNTs. Additionally, this hybrid hydrogel provides a favorable biomimetic microenvironment for cell attachment and growth due to its inherent biocompatibility. Combination of these merits yields hybrid hydrogels that can be good candidates for application to biosensors and biomedical devices. More importantly, the hybrid hydrogel coatings fabricated via the current strategy have good adhesion to the electrode substrate which is highly desired for chronically implantable devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号