首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   545篇
  免费   21篇
化学   436篇
晶体学   1篇
力学   15篇
数学   42篇
物理学   72篇
  2022年   3篇
  2021年   11篇
  2020年   4篇
  2019年   4篇
  2018年   4篇
  2017年   6篇
  2016年   10篇
  2015年   18篇
  2014年   13篇
  2013年   20篇
  2012年   40篇
  2011年   37篇
  2010年   26篇
  2009年   14篇
  2008年   34篇
  2007年   29篇
  2006年   34篇
  2005年   30篇
  2004年   20篇
  2003年   19篇
  2002年   24篇
  2001年   3篇
  1999年   6篇
  1998年   4篇
  1997年   8篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1988年   7篇
  1987年   2篇
  1986年   5篇
  1985年   11篇
  1984年   13篇
  1983年   7篇
  1982年   7篇
  1981年   13篇
  1980年   4篇
  1979年   3篇
  1978年   4篇
  1977年   9篇
  1976年   4篇
  1975年   3篇
  1974年   2篇
  1973年   5篇
  1972年   4篇
  1911年   2篇
排序方式: 共有566条查询结果,搜索用时 15 毫秒
71.
Molecular probes for selective identification of protein aggregates are important to advance our understanding of the molecular pathogenesis underlying protein aggregation diseases. Here we report the chemical design of a library of anionic luminescent conjugated oligothiophenes (LCOs), which can be utilized as ligands for detection of protein aggregates. Certain molecular requirements were shown to be necessary for detecting (i) early non-thioflavinophilic protein assemblies of Aβ1-42 and insulin preceding the formation of amyloid fibrils and (ii) for obtaining distinct spectral signatures of the two main pathological hallmarks observed in human Alzheimer's diease brain tissue (Aβ plaques and neurofibrillary tangles). Our findings suggest that a superior anionic LCO-based ligand should have a backbone consisting of five to seven thiophene units and carboxyl groups extending the conjugated thiophene backbone. Such LCOs will be highly useful for studying the underlying molecular events of protein aggregation diseases and could also be utilized for the development of novel diagnostic tools for these diseases.  相似文献   
72.
The mechanism of proton-coupled electron transfer (PCET) from tyrosine in enzymes and synthetic model complexes is under intense discussion, in particular the pH dependence of the PCET rate with water as proton acceptor. Here we report on the intramolecular oxidation kinetics of tryptophan derivatives linked to [Ru(bpy)(3)](2+) units with water as proton acceptor, using laser flash-quench methods. It is shown that tryptophan oxidation can proceed not only via a stepwise electron-proton transfer (ETPT) mechanism that naturally shows a pH-independent rate, but also via another mechanism with a pH-dependent rate and higher kinetic isotope effect that is assigned to concerted electron-proton transfer (CEP). This is in contrast to current theoretical models, which predict that CEP from tryptophan with water as proton acceptor can never compete with ETPT because of the energetically unfavorable PT part (pK(a)(Trp(?)H(+)) = 4.7 ? pK(a)(H(3)O(+)) ≈ -1.5). The moderate pH dependence we observe for CEP cannot be explained by first-order reactions with OH(-) or the buffers and is similar to what has been demonstrated for intramolecular PCET in [Ru(bpy)(3)](3+)-tyrosine complexes (Sjo?din, M.; et al. J. Am. Chem. Soc.2000, 122, 3932. Irebo, T.; et al. J. Am. Chem. Soc.2007, 129, 15462). Our results suggest that CEP with water as the proton acceptor proves a general feature of amino acid oxidation, and provide further experimental support for understanding of the PCET process in detail.  相似文献   
73.
The local electronic structure of glycine in neutral, basic, and acidic aqueous solution is studied experimentally by X-ray photoelectron spectroscopy and theoretically by molecular dynamics simulations accompanied by first-principle electronic structure and spectrum calculations. Measured and computed nitrogen and carbon 1s binding energies are assigned to different local atomic environments, which are shown to be sensitive to the protonation/deprotonation of the amino and carboxyl functional groups at different pH values. We report the first accurate computation of core-level chemical shifts of an aqueous solute in various protonation states and explicitly show how the distributions of photoelectron binding energies (core-level peak widths) are related to the details of the hydrogen bond configurations, i.e. the geometries of the water solvation shell and the associated electronic screening. The comparison between the experiments and calculations further enables the separation of protonation-induced (covalent) and solvent-induced (electrostatic) screening contributions to the chemical shifts in the aqueous phase. The present core-level line shape analysis facilitates an accurate interpretation of photoelectron spectra from larger biomolecular solutes than glycine.  相似文献   
74.
Complete double photoelectron spectra are presented for 18 small molecules where the location of charges in the cations and dications is relatively clearly defined. The data demonstrate the importance of a coulombic repulsion contribution to the double ionisation energies. Examination of data for a wide range of molecules leads to a new empirical rule to calculate double ionisation energies from the molecules’ single ionisation energies and maximum dimensions. Where single and double ionisation energies are known the rule allows the deduction of plausible intercharge distances.  相似文献   
75.
This work highlights four different topics in modeling of DNA: (i) the importance of water and ions together with the structure and function of DNA; the hydration structure around the ions appears to be the determining factor in the ion coordination to DNA, as demonstrated in the results of our MD simulations; (ii) how MD simulations can be used to simulate single molecule manipulation experiments as a complement to reveal the structural dynamics of the studied biomolecules; (iii) how damaged DNA can be studied in computer simulations; and (iv) how repair of damaged DNA can be studied theoretically. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   
76.
77.
The phenylidenepyridine (ppy) palladacycles [PdCl(ppy)(IMes)] ( 4 ) [IMes = 1,3‐bis(mesityl)imidazol‐2‐ylidene] and [PdCl(ppy){(CN)2IMes}] ( 6 ) [(CN)2IMes = 4,5‐dicyano‐1,3‐bis(mesityl)imidazol‐2‐ylidene] were prepared by facile two step syntheses, starting with the reaction of palladium(II) chloride with 2‐phenylpyridine followed by subsequent addition of the NHC ligand to the precatalyst precursor [PdCl(ppy)]2. Suitable crystals for the X‐ray analysis of the complexes 4 and 6 were obtained. It was shown that 6 has a shorter NHC‐palladium bond than the IMes complex 4 . The difference of the palladium carbene bond lengths based on the higher π‐acceptor strength of (CN)2IMes in comparison to IMes. Thus, (CN)2IMes should stabilize the catalytically active central palladium atom better than IMes. As a measure for the π‐acceptor strength of (CN)2IMes compared to IMes, the selone (CN)2IMes · Se ( 7 ) was prepared and characterized by 77Se‐NMR spectroscopy. The π‐acceptor strength of 7 was illuminated by the shift of its 77Se‐NMR signal. The 77Se‐NMR signal of 7 was shifted to much higher frequencies than the 77Se‐NMR signal of IMes · Se. Catalytic experiments using the Mizoroki‐Heck reaction of aryl chlorides with n‐butyl acrylate showed that 6 is the superior performer in comparison to 4 . Using complex 6 , an extensive substrate screening of 26 different aryl bromides with n‐butyl acrylate was performed. Complex 6 is a suitable precatalyst for para‐substituted aryl bromides. The catalytically active species was identified by mercury poisoning experiments to be palladium nanoparticles.  相似文献   
78.
Spectroscopic Investigations on Substituent Effects in Silylmethylsilanes The silanes Me3?n(Me3SiCH2)nSiH (n = 1–3), (RMe2SiCH2)3SiH (R = n-Bu, n-Pr, Et, PhCH2, Ph) and Me3ElCH2SiMe2H (El = Ge, Sn) were prepared. The frequencies of the Si? H stretching vibration, the 29Si? 1H coupling constants and the 29Si n.m.r. chemical shifts were measured. The ?(SiH) and J(29Si? 1H) values in the silanes Me3?n(Me3SiCH2)nSiH depend on the number of trimethylsilymethyl groups. There is hardly an influence of the substituents R on these values in the silanes (RMe2SiCH2)3SiH. The frequencies of the Si? H stretching vibrations in the silanes Me3ElCH2SiMe2H (El = Si, Ge, Sn) show the order Si?Ge > Sn. The 29Si n.m.r. chemical shifts of the Si(H) signals are approximately equal in the silanes Me3?n(Me3SiCH2)nSiH and (RMe2SiCH2)3SiH.  相似文献   
79.
The highly substrate-specific strictosidine synthase (EC 4.3.3.2) catalyzes the biological Pictet-Spengler condensation between tryptamine and secologanin, leading to the synthesis of about 2000 monoterpenoid indole alkaloids in higher plants. The crystal structure of Rauvolfia serpentina strictosidine synthase (STR1) in complex with strictosidine has been elucidated here, allowing the rational site-directed mutation of the active center of STR1 and resulting in modulation of its substrate acceptance. Here, we report on the rational redesign of STR1 by generation of a Val208Ala mutant, further describing the influence on substrate acceptance and the enzyme-catalyzed synthesis of 10-methyl- and 10-methoxystrictosidines. Based on the addition of strictosidine to a crude strictosidine glucosidase preparation from Catharanthus cells, a combined chemoenzymatic approach to generating large alkaloid libraries for future pharmacological screenings is presented.  相似文献   
80.
Alkaline detoxification strongly improves the fermentability of dilute-acid hydrolysates in the production of bioethanol from lignocellulose with Saccharomyces cerevisiae. New experiments were performed with NH4OH and NaOH to define optimal conditions for detoxification and make a comparison with Ca(OH)2 treatment feasible. As too harsh conditions lead to sugar degradation, the detoxification treatments were evaluated through the balanced ethanol yield, which takes both the ethanol production and the loss of fermentable sugars into account. The optimization treatments were performed as factorial experiments with 3-h duration and varying pH and temperature. Optimal conditions were found roughly in an area around pH 9.0/60°C for NH4OH treatment and in a narrow area stretching from pH 9.0/80°C to pH 12.0/30°C for NaOH treatment. By optimizing treatment with NH4OH, NaOH, and Ca(OH)2, it was possible to find conditions that resulted in a fermentability that was equal or better than that of a reference fermentation of a synthetic sugar solution without inhibitors, regardless of the type of alkali used. The considerable difference in the amount of precipitate generated after treatment with different types of alkali appears critical for industrial implementation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号