首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13925篇
  免费   2661篇
  国内免费   2281篇
化学   10512篇
晶体学   295篇
力学   733篇
综合类   157篇
数学   1262篇
物理学   5908篇
  2024年   57篇
  2023年   312篇
  2022年   594篇
  2021年   709篇
  2020年   729篇
  2019年   724篇
  2018年   603篇
  2017年   613篇
  2016年   780篇
  2015年   847篇
  2014年   1031篇
  2013年   1291篇
  2012年   1445篇
  2011年   1444篇
  2010年   1046篇
  2009年   947篇
  2008年   1074篇
  2007年   848篇
  2006年   744篇
  2005年   566篇
  2004年   462篇
  2003年   329篇
  2002年   272篇
  2001年   220篇
  2000年   191篇
  1999年   178篇
  1998年   125篇
  1997年   89篇
  1996年   112篇
  1995年   73篇
  1994年   74篇
  1993年   66篇
  1992年   50篇
  1991年   51篇
  1990年   30篇
  1989年   32篇
  1988年   18篇
  1987年   14篇
  1986年   27篇
  1985年   18篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1981年   2篇
  1976年   2篇
  1975年   2篇
  1959年   1篇
  1957年   5篇
  1937年   1篇
  1936年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Acid‐treated g‐C3N4‐Cu2O was prepared by hydrothermal reduction followed by high temperature calcination and acid exfoliation. The structures and properties of as‐synthesized samples were characterized using a range of techniques, such as X‐ray photoelectron spectroscopy, scanning electron microscopy, Photoluminescence Spectroscopy and the Brunauer–Emmett–Teller (BET) theory. The photocatalytic activity was evaluated by measuring the photodegradation of methyl orange under visible‐light irradiation. Based on the results of TEM, XPS, EPR and other techniques, it was verified that a heterojunction was formed. The acid treatment process can increase the specific surface area to form abundant heterojunction interfaces as channels for photo‐generated carrier separation, thereby enhancing its light utilization and quantum efficiency. Results indicate that acid‐treated g‐C3N4‐Cu2O possesses a large specific surface area, which provides plentiful activated sites for heterojunctions to form; in addition, it showed a high visible light effect and the minimum charge‐transfer resistance. Furthermore, the g‐C3N4‐Cu2O material exhibits high levels of effectiveness and stability. Electron paramagnetic resonance and a series of radical trapping experiments demonstrate that the holes and ?O2? could be the main active species in methyl orange photodegradation. This work could provide new insights into the fabrication of composite materials as high‐performance photocatalysts, and facilitate their application in addressing environmental protection issues.  相似文献   
992.
A new method for the production of p‐hydroquinone via a Pt/C‐catalyzed reduction of p‐benzoquinone is developed. Different from the conventional transfer hydrogenation reactions that usually use secondary alcohols such as isopropanol as the hydrogen source, in this work, it is unexpectedly found that cyclohexanone is a more effective hydrogen source than secondary alcohols, even cyclohexanol. This reaction affords acceptable yields of p‐hydroquinone with very high turnover number (1109) of the Pt/C catalyst. A mechanism of this interesting reaction is proposed on the basis of the results of a series of control experiments, GC–MS analysis as well as dynamic studies.  相似文献   
993.
An analytical method for simultaneously determining 32 volatile organic compounds in mattress fabrics based on static headspace coupled to gas chromatography and mass spectrometry detection was established. Samples were cut into 5?×?5?mm small pieces and placed in a 20?mL headspace vial at 90° for 30?min. To achieve the optimum conditions for the analysis, several parameters including the heating temperature, heating time, sample weight, and injection time were investigated. The results demonstrated that the most important parameter influencing the sensitivity of the analysis was the heating temperature. The optimum method showed good linearities with correlation coefficients ranged from 0.9944 to 0.9998. The limits of detection and quantification for the target compounds were in the ranges of 0.004–0.032 and 0.013–0.099?µg/?g, respectively. The method was successfully applied to determine the volatile organic compounds in six categories of mattress fabrics. The results showed that some volatile organic compounds were found, such as naphthalene, hexadecane, and 1,4-diisopropylbenzene. Moreover, the concentrations of 32 volatile organic compounds decreased following the order of jute, terylene, polyester, velboa, nylon, and cotton samples in the study. These results indicated that the method is fast, accurate, and successful for determining volatile organic compounds in mattress fabrics.  相似文献   
994.
A mild, efficient, and environmentally benign one-pot synthesis of functionalized chromeno[4,3-b]pyrrol-4(1H)-ones by a three-component domino reaction of 4-aminocoumarins, arylglyoxal monohydrates, and 1,3-dicarbonyl compounds in refluxing ethanol without the use of catalyst is reported. The present protocol features operational simplicity, short reaction time, good yields, and the absence of aqueous workup procedure and chromatographic separation.  相似文献   
995.
A new class of high‐temperature dipolar polymers based on sulfonylated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SO2‐PPO) was synthesized by post‐polymer functionalization. Owing to the efficient rotation of highly polar methylsulfonyl side groups below the glass transition temperature (Tg≈220 °C), the dipolar polarization of these SO2‐PPOs was enhanced, and thus the dielectric constant was high. Consequently, the discharge energy density reached up to 22 J cm?3. Owing to its high Tg , the SO2‐PPO25 sample also exhibited a low dielectric loss. For example, the dissipation factor (tan δ) was 0.003, and the discharge efficiency at 800 MV m?1 was 92 %. Therefore, these dipolar glass polymers are promising for high‐temperature, high‐energy‐density, and low‐loss electrical energy storage applications.  相似文献   
996.
The oxidative [4+2] annulation reaction represents an elegant and versatile synthetic protocol for the construction of six‐membered heterocyclic compounds. Herein, a photoinduced oxidative [4+2] annulation of NH imines and alkenes was developed by utilizing a dual photoredox/cobaloxime catalytic system. Various multisubstituted 3,4‐dihydroisoquinolines can be obtained in good yields. This method is not only obviated the need of stiochiometric amounts of oxidants but also exhibited excellent atom economy by generating H2 as the only byproduct. Remarkably, high regioselectivity and trans diastereoselectivity can be achieved in this transformation even if the Z/E mixture of alkenes were employed.  相似文献   
997.
Phase transition from WO3 to sub‐stoichiometric WO2.9 by a facile method has varied the typical semiconductor to be quasi‐metallic with a narrowed band gap and a shifted Femi energy to the conduction band, while maintaining a high crystallinity. The resultant WO2.9 nanorods possess a high total absorption capacity (ca. 90.6 %) over the whole solar spectrum as well as significant photothermal conversion capability, affording a conversion efficiency as high as around 86.9 % and a water evaporation efficiency of about 81 % upon solar light irradiation. Meanwhile, the promising potential of the nanorods for anticancer photothermal therapy have been also demonstrated, with a high photothermal conversion efficiency (ca. 44.9 %) upon single wavelength near‐infrared irradiation and a high tumor inhibition rate (ca. 98.5 %). This study may have opened up a feasible route to produce high‐performance photothermal materials from well‐developed oxides.  相似文献   
998.
Reported herein is the first example of a direct arylation of heteroarenes by a transient‐ligand‐directed strategy without the need to construct and deconstruct the directing group. A wide range of heteroarenes undergoes the coupling with diverse aryl iodides to assemble a large library of highly selective and functionalized 3‐arylthiophene‐2‐carbaldehydes. This route provides an opportunity to rapidly access new mechanofluorochromic materials. Moreover, a novel strategy for mechanochromic luminogens with chromism trends of red‐ and blue‐shifts has been disclosed for the first time by facile functional‐group modifications to a common structural core.  相似文献   
999.
Photodynamic therapy (PDT) shows unique selectivity and irreversible destruction toward treated tissues or cells, but still has several problems in clinical practice. One is limited therapeutic efficiency, which is attributed to hypoxia in tumor sites. Another is the limited treatment depth because traditional photosensitizes are excited by short wavelength light (<700 nm). An assembled nano‐complex system composed of oxygen donor, two‐photon absorption (TPA) species, and photosensitizer (PS) was synthesized to address both problems. The photosensitizer is excited indirectly by two‐photon laser through intraparticle FRET mechanism for improving treatment depth. The oxygen donor, hemoglobin, can supply extra oxygen into tumor location through targeting effect for enhanced PDT efficiency. The mechanism and PDT effect were verified through both in vitro and in vivo experiments. The simple system is promising to promote two‐photon PDT for clinical applications.  相似文献   
1000.
Nanochannels based on smart DNA hydrogels as stimulus‐responsive architecture are presented for the first time. In contrast to other responsive molecules existing in the nanochannel in monolayer configurations, the DNA hydrogels are three‐dimensional networks with space negative charges, the ion flux and rectification ratio are significantly enhanced. Upon cyclic treatment with K+ ions and crown ether, the DNA hydrogel states could be reversibly switched between less stiff and stiff networks, providing the gating mechanism of the nanochannel. Based on the architecture of DNA hydrogels and pH stimulus, cation or anion transport direction could be precisely controlled and multiple gating features are achieved. Meanwhile, G‐quadruplex DNA in the hydrogels might be replaced by other stimulus‐responsive DNA molecules, peptides, or proteins, and thus this work opens a new route for improving the functionalities of nanochannel by intelligent hydrogels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号