首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   0篇
化学   64篇
物理学   2篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   5篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   6篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   5篇
  2003年   2篇
  2002年   6篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1994年   1篇
  1972年   1篇
  1969年   3篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
21.
The electronic tongue based on an array of 30 non-specific potentiometric chemical sensors has been applied to qualitative and quantitative monitoring of a batch fermentation process of starting culture for light cheese production. Process control charts were built by using PLS regression and data from fermentations run under normal operating conditions. Control charts allow discrimination of samples from fermentation batches run under abnormal operating conditions from normal ones at as early as 30–50% of fully evolved fermentations. The capability of the electronic tongue to quantify concentrations of important organic acids (citric, lactic and orotic) in the present type of fermentation media was demonstrated. Average prediction errors were assessed in the range 5–13% based on test set validation. Correlation between peptide profiles determined using HPLC and the electronic tongue output was also established. The electronic tongue was demonstrated to be a promising tool for fermentation process monitoring and quantitative analysis of growth media.http://www.electronictongue.com  相似文献   
22.
A flow-injection multisensor system (FIMS) comprising potentiometric sensors of different types for determination of free cyanide activity in basic solutions for extraction of noble metals was developed. The solvent polymeric membrane sensors based on metalloporphyrin and crystalline sensors were combined in the sensor system. The system allowed determination of cyanide activity in the range 10−4–1 mol l−1 with an error less than 5% in individual cyanide solutions and acceptable precision (about 20%) in process liquids. The system was able to analyse up to 20 samples per h. The FIMS was also applied to detecting of silver ions in the presence of cyanide. Chalcogenide glass sensor was used as the detector that ensured the precision of 20%.  相似文献   
23.
24.
25.
26.
27.
Tertaphenylporphyrin-based film sensors were prepared with anionic and cationic lipophilic ionic additives introduced into polyvinyl chloride membranes plasticized with various solvents. The data obtained with these sensors were used to calculate the parameters of the cross sensitivity of the sensors. A multisensor system of the electronic tongue type was developed on the basis of the sensors studied.  相似文献   
28.
Toxicity is one of the key parameters of water quality in environmental monitoring. However, being evaluated as a response of living beings (as their mobility, fertility, death rate, etc.) to water quality, toxicity can only be assessed with the help of these living beings. This imposes certain restrictions on toxicity bioassay as an analytical method: biotest organisms must be properly bred, fed and kept under strictly regulated conditions and duration of tests can be quite long (up to several days), thus making the whole procedure the prerogative of the limited number of highly specialized laboratories. This report describes an original application of potentiometric multisensor system (electronic tongue) when the set of electrochemical sensors was calibrated against Daphnia magna death rate in order to perform toxicity assessment of urban waters without immediate involvement of living creatures. PRM (partial robust M) and PLS (projections on latent structures) regression models based on the data from this multisensor system allowed for prediction of toxicity of unknown water samples in terms of biotests but in the fast and simple instrumental way. Typical errors of water toxicity predictions were below 20% in terms of Daphnia death rate which can be considered as a good result taking into account the complexity of the task.  相似文献   
29.
The application of the potentiometric multisensor system (electronic tongue, ET) for quantification of the bitter taste of structurally diverse active pharmaceutical ingredients (API) is reported. The measurements were performed using a set of bitter substances that had been assessed by a professional human sensory panel and the in vivo rat brief access taste aversion (BATA) model to produce bitterness intensity scores for each substance at different concentrations. The set consisted of eight substances, both inorganic and organic – azelastine, caffeine, chlorhexidine, potassium nitrate, naratriptan, paracetamol, quinine, and sumatriptan. With the aim of enhancing the response of the sensors to the studied APIs, measurements were carried out at different pH levels ranging from 2 to 10, thus promoting ionization of the compounds. This experiment yielded a 3 way data array (samples × sensors × pH levels) from which 3wayPLS regression models were constructed with both human panel and rat model reference data. These models revealed that artificial assessment of bitter taste with ET in the chosen set of API's is possible with average relative errors of 16% in terms of human panel bitterness score and 25% in terms of inhibition values from in vivo rat model data. Furthermore, these 3wayPLS models were applied for prediction of the bitterness in blind test samples of a further set of API's. The results of the prediction were compared with the inhibition values obtained from the in vivo rat model.  相似文献   
30.
The history of development of “electronic tongue” multisensor systems whose operation is underlain by principles close to those in biological sensory systems was briefly overviewed. The main types of “electronic tongue” systems developed by now were described, along with sensor materials and sensors applied in such systems. The most widespread applications of “electronic tongues” were discussed including those for recognition and classification of liquid media, quantitative analysis of various components in these liquids, smart monitoring of industrial processes, and evaluation of the type and intensity of the flavor of various foodstuffs and drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号