首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   0篇
  国内免费   1篇
化学   43篇
晶体学   1篇
数学   13篇
物理学   62篇
  2023年   1篇
  2022年   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2013年   6篇
  2012年   1篇
  2011年   5篇
  2010年   1篇
  2008年   1篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   3篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1978年   4篇
  1977年   3篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有119条查询结果,搜索用时 140 毫秒
61.
62.
The equilibrium headspace above several military-grade explosives was sampled using solid phase microextraction fibers and the sorbed analytes determined using gas chromatography with an electron capture detector (GC-ECD). The major vapors detected were the various isomers of dinitrotoluene (DNTs), dinitrobenzene (DNBs), and trinitrotoluene (TNTs), with 2,4-DNT and 1,3-DNB often predominating. Although 2,4,6-TNT made up from 50 to 99% of the solid explosive, it was only a minor component of the equilibrium vapor. The flux of chemical signatures from intact land mines is thought to originate from surface contamination and evolution of vapors via cracks in the casing and permeation through polymeric materials. The levels of external contamination were determined on a series of four types of Yugoslavian land mines (PMA-1A, PMA2, TMA5 and TMM1). The flux into air as a function of temperature was determined by placing several of these mines in Tedlar bags and measuring the mass accumulation on the walls of the bags after equilibrating the mine at one of five temperatures. TNT was a major component of the surface contamination on these mines, yet it accounted for less than 10% of the flux for the three plastic-cased mines, and about 33% from the metal antitank mine (TMM1). Either 2,4-DNT or 1,3-DNB produced the largest vapor flux from these four types of land mines. The environmental stability of the most important land mine signature chemicals was determined as a function of temperature by fortifying soils with low aqueous concentrations of a suite of these compounds and analyzing the remaining concentrations after various exposure times. The kinetics of loss was not of first order in analyte concentration, indicating that half-life is concentration dependent. At 23 degrees C, the half life of 2,4,6-TNT, with an initial concentration of about 0.5 mg kg(-1), was found to be only about 1 day. Under identical conditions, the half-life of 2,4-DNT was about 25 days. A research minefield was established and a number of these same four mine types were buried. Soil samples were collected around several of these mines at several time periods after burial and the concentration of signature chemicals determined by acetonitrile extraction and GC-ECD analysis. Relatively high concentrations of 2,4,6-TNT and 2,4-DNT were found to have accumulated beneath a TMA5 antitank mine, with lower concentrations in the soil layers between the mine and the surface. Signatures were distributed very heterogeneously in surface soils, and concentrations were very low (low mug kg(-1) range). Lower, but detectable, concentrations of signatures were detectable irregularly in soils near the PMA-1A mines in contrast to the TMA5 mines. Concentrations of signature chemicals were generally below detection limits (<1 mug kg(-1)) near the TMM1 and PMA-2 mines, even 8 months after burial.  相似文献   
63.
64.
65.
    
  相似文献   
66.
Spectrophotometric and calorimetric titrations were used to determine the equilibrium constants (log10 K 111) and enthalpies of formation (ΔH 111) for aqueous ternary complexes of the form M(La)(Lb) (M = Nd3+, Sm3+, Tb3+, Ho3+, Er3+, or Am3+; La = DTPA5?, DO3A3?, or CDTA4?; Lb = oxalate (Ox), malonate (Mal), or iminodiacetate (IDA)). Inner-sphere ternary complexes were readily formed with the septadentate DO3A (1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid) and hexadentate CDTA (trans-1,2-diaminocyclohexanetetraacetic acid) ligands, whose binary complexes have residual metal-coordinated water molecules that are readily displaced by the smaller secondary ligands. The stability constants for the formation of lanthanide–CDTA complexes with Ox, Mal, and IDA generally increase with decreasing ionic radius when steric hindrance is minimal, with the trend in the M(CDTA)? formation constants overshadowing any size-based reversal in the stepwise ternary complexation constants. Similar ternary complexes with DO3A showed little increase in thermodynamic stability compared to analogous CDTA complexes and no preference for larger Ln cations. The octadentate DTPA (diethylenetriaminepentaacetic acid) ligand proved too large to form ternary complexes to a measurable extent with any of the secondary ligands investigated, despite the presence of one residual inner sphere water molecule.  相似文献   
67.
68.
According to a commonly held view, the properties of condensed-matter systems are simply consequences of the properties of their atomic-level components, and all of theoretical research in condensed-matter physics consists essentially in deducing the former from the latter. I argue that this apparently plausible picture is totally misleading, and that condensed-matter physics is a discipline which is not only autonomous, but guaranteed in the long run to be fundamental.  相似文献   
69.
An approach to the integration of nanolithography with synthetic chemical methodology is described, in which near-field optical techniques are used to selectively deprotect films formed by the adsorption of aminosilanes protected by modified 2-nitrophenylethoxycarbonyl (NPEOC) groups. The NPEOC groups are functionalized at the m- or p-position with either a tetraethyleneglycol or a heptaethylene glycol adduct. We describe the synthesis of these bioresistant aminosilanes and the characterization of the resulting photoreactive films. Photodeprotection by exposure to UV light (λ = 325 nm) yielded the amine with high efficiency, at a similar rate for all four adsorbates, and was complete after an exposure of 2.24 J cm(-2). Following photodeprotection, derivatization by trifluoroacetic anhydride was carried out with high efficiency. Micropatterned samples, formed using a mask, were derivatized with aldehyde-functionalized polymer nanoparticles and, following derivatization with biotin, were used to form patterns of avidin-coated polymer particles. Fluorescence microscopy and atomic force microscopy data demonstrated that the intact protecting groups conferred excellent resistance to nonspecific adsorption. Nanometer-scale patterns were created using scanning near-field photolithography and were derivatized with biotin. Subsequent conjugation with avidin-functionalized polymer nanoparticles yielded clear fluorescence images that indicated dense attachment to the nanostructures and excellent protein resistance on the surrounding surface. These simple photocleavable protecting group strategies, combined with the use of near-field exposure, offer excellent prospects for the control of surface reactivity at nanometer resolution in biological systems and offer promise for integrating the top-down and bottom-up molecular fabrication paradigms.  相似文献   
70.
We present a phenomenological theory of the homogeneous orbital dynamics of the class of “separable” anisotropic superfluid phases which includes the ABM state generally identified with 3He-A. The theory is developed by analogy with the spin dynamics described in the first paper of this series; the basic variables are the orientation of the Cooper-pair wavefunction (in the ABM phase, the l-vector) and a quantity K which we visualize as the “pseudo-angular momentum” of the Cooper pairs but which must be distinguished, in general, from the total orbital angular momentum of the system. In the ABM case l is the analog of d in the spin dynamics and K of the “superfluid spin” Sp. Important points of difference from the spin case which are taken into account include the fact that a rotation of l without a simultaneous rotation of the normal-component distribution strongly increases the energy of the system (“normal locking”), and that the equilibrium value of K is zero even for finite total angular momentum. The theory does not claim to handle correctly effects associated with any intrinsic angular momentum arising from particle-hole asymmetry, but it is shown that the magnitude of this quantity can be estimated directly from experimental data and is extremely small; also, the Landau damping does not emerge automatically from the theory, but can be put in in an ad hoc way. With these provisos the theory should be valid for all frequencies ω ? Δ(T)h? irrespective of the value of ωτ. (Δ = gap parameter, τ = quasi-particle relaxation time.) It disagrees with all existing phenomenological theories of comparable generality, although the disagreement with that of Volovik and Mineev is confined to the “gapless” region very close to Tc.The phenomenological equations of motion, which are similar in general form to those of the spin dynamics with damping, involve an “orbital susceptibility of the Cooper pairs” χorb(T). We give a possible microscopic definition of the variable K and use it to calculate χorb(T) for a general phase of the “separable” type. The theory is checked by inserting the resulting formula in the phenomenological equations for ωτ ? 1 and comparing with the results of a fully microscopic calculation based on the collisionless kinetic equation; precise agreement is obtained for both the ABM and the (real) polar phase, showing that the complex nature of the ABM phase and the associated “pair angular momentum” is largely irrelevant to its orbital dynamics. We note also that the phenomenological theory gives a good qualitative picture even when ωΔ(T), e.g., for the flapping mode near Tc. Our theory permits a simple and unified calculation of (1) the Cross-Anderson viscous torque in the overdamped regime, (2) the flapping-mode frequency near zero temperature, (3) orbital effects on the NMR, both at low temperatures and near Tc, (4) the orbit wave spectrum at zero temperature (this requires a generalization to inhomogeneous situations which is possible at T = 0 but probably not elsewhere). We also discuss the possibility of experiments of the Einstein-de Haas type. Generally speaking, our results for any one particular application can be also obtained from some alternative theory, but in the case of orbital and spin relaxation very close to Tc (within the “gapless” region) our predictions, while somewhat tentative and qualitative, appear to disagree with those of all existing theories. We discuss briefly how our approach could be extended to apply to more general phases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号