首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   0篇
化学   46篇
物理学   5篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2008年   2篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
31.
Posttranslational modifications such as glycosylation can play a fundamental role in signaling pathways that transform an ordinary cell into a malignant one. The development of a protocol to detect these changes in the preliminary stages of disease can lead to a sensitive and specific diagnostic for the early detection of malignancies such as ovarian cancer in which differential glycan patterns are linked to etiology and progression. Small variations in instrument parameters and sample preparation techniques are known to have significant influence on the outcome of an experiment. For an experiment to be effective and reproducible, these parameters must be optimized for the analyte(s) under study. We present a detailed examination of sample preparation and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FT-ICR-MS) analysis of O-linked glycans globally cleaved from mucin glycoproteins. Experiments with stable isotope-labeled biomolecules allowed for the establishment of appropriate acquisition times and excitation voltages for MALDI-FT-ICR-MS of oligosaccharides. Quadrupole ion guide optimization studies with mucin glycans identified conditions for the comprehensive analysis of the entire mass range of O-linked carbohydrates in this glycoprotein. Separately optimized experimental parameters were integrated in a method that allowed for the effective study of O-linked glycans. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   
32.
9-Aminofluorene (9AmFL) was investigated as an oligosaccharide label. The label was amenable to high UV detectability but did not interfere with mass spectrometric analysis. The 9AmFL label has high molar absorptivity ( = 1.4 × 104 L cm−1 mol−1 at λ = 267 nm), is chemically stable, and adds easily in reductive amination to the aldehyde terminus of oligosaccharides. Various linear and branched oligosaccharides were labeled with 9AmFL and the products were purified by chromatography on porous graphitized carbon (PGC). The derivatization reaction gave excellent yields (>95%). Up to 100-fold increase in UV sensitivity at λ = 206 nm, compared to the corresponding alditol, was observed. Mass spectra were recorded for the labeled compounds. In the presence of sodium dopant, series of Y- and B-fragments were observed. Protonation of the labeled compounds prior to mass spectrometric analysis resulted in simplified spectra (Y-fragments only) and allowed for complete sequence analysis. The retention of the positive charge at the label in the protonated species was consistent with the basicity of the amine. The smallest amount of labeled sugar to be detected by photo-diode array (PDA) was 5 pmol (λ = 267 nm).  相似文献   
33.
34.
35.
Exoglycosidase digestion in combination with the catalog-library approach (CLA) is used with matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) to obtain the complete structure of oligosaccharides. The CLA is a collision-induced dissociation (CID)-based method used to determine the structure of O-linked neutral oligosaccharides. It provides both linkage and stereochemical information. Exoglycosidases are used to confirm independently the validity of the CLA. In some cases, the CLA provides structural information on all but a single residue. Exoglycosidase is used to refine these structures. In this way, exoglycosidase use is targeted employing only a small number of enzymes. Exoglycosidase arrays, which have been used with N-linked oligosaccharides, is avoided despite the larger variations in structures of O-linked species.  相似文献   
36.
Antibodies targeting specific antigens are widely utilized in biological research to investigate protein interactions or to quantify target antigens. Here, we introduce antigen–antibody proximity labeling (AAPL), a novel method to map the antigen interaction sites as well as interactors of antibody-targeted proteins. As a proof of concept, AAPL was demonstrated using sodium/potassium transporting ATPase (ATP1A1) and epidermal growth factor receptor 2 (ERBB2)-specific antibodies that were modified with an Fe(iii) catalytic probe. Once bound to their target proteins, Fe(iii)-induced catalytic oxidation occurred in proximity of the antigen''s epitope. Oxidative proteomic analysis was then used to determine the degree of oxidation, the site of oxidation within the targeted antigen, and the interacting proteins that were in close proximity to the targeted antigen. An AAPL score was generated for each protein yielding the specificity of the oxidation and proximity of the interacting protein to the target antigen. As a final demonstration of its utility, the AAPL approach was applied to map the interactors of liver–intestine-cadherin (CDH17) in colon cancer cells.

Modified catalytic antibodies targeting specific antigens are employed to investigate protein interactions and antigen interaction sites.  相似文献   
37.
38.
A long-range glycosyl transfer reaction was observed in the collision-induced dissociation Fourier transform (CID FT) mass spectra of benzylamine-labeled and 9-aminofluorene-labeled lacto-N-fucopentaose I (LNFP I) and lacto-N-difucohexaose I (LNDFH I). The transfer reaction was observed for the protonated molecules but not for the sodiated molecules. The long-range glycosyl transfer reaction involved preferentially one of the two L-fucose units in labeled LNDFH I. CID experiments with labeled LNFP I and labeled LNFP II determined the fucose with the greatest propensity for migration. Further experiments were performed to determine the final destination of the migrating fucose. Molecular modeling supported the experiments and reaction mechanisms are proposed.  相似文献   
39.
The identification of pharmacologically promising compounds (lead compounds) from combinatorial libraries is frequently limited by the throughput of the analytical technique employed. Fourier transform mass spectrometry (FTMS) offers high sensitivity, mass accuracy (m/Deltam > 500 000), and sequencing capabilities. A rapid and efficient method for high-throughput analysis of single beads from peptide-encoded combinatorial libraries with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is presented. Encoding peptides on single beads are identified and structurally characterized by MALDI time-of-flight (TOF) and ultrahigh-resolution MALDI Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. A strategy of on-probe sample preparation is developed to minimize handling of the beads.  相似文献   
40.
The gas-phase hydrogen/deuterium (HID) exchange kinetics of several protonated amino acids and dipeptides under a background pressure of CH3OD were determined in an external source Fourier transform mass spectrometer. H/D exchange reactions occur even when the gas-phase basicity of the compound is significantly larger (> 20 kcal/mol) than methanol. In addition; greater deuterium incorporation is observed for compounds that have multiple sites of similar basicities. A mechanism is proposed that involves a structurally specific intermediate with extensive interaction between the protonated compound and methanol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号