首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5874篇
  免费   207篇
  国内免费   33篇
化学   3666篇
晶体学   23篇
力学   192篇
数学   1196篇
物理学   1037篇
  2023年   58篇
  2022年   136篇
  2021年   182篇
  2020年   156篇
  2019年   153篇
  2018年   129篇
  2017年   116篇
  2016年   242篇
  2015年   229篇
  2014年   241篇
  2013年   334篇
  2012年   410篇
  2011年   463篇
  2010年   269篇
  2009年   246篇
  2008年   373篇
  2007年   338篇
  2006年   308篇
  2005年   298篇
  2004年   234篇
  2003年   176篇
  2002年   188篇
  2001年   71篇
  2000年   48篇
  1999年   63篇
  1998年   51篇
  1997年   64篇
  1996年   50篇
  1995年   48篇
  1994年   45篇
  1993年   33篇
  1992年   25篇
  1991年   28篇
  1990年   21篇
  1989年   19篇
  1988年   22篇
  1987年   25篇
  1986年   19篇
  1985年   25篇
  1984年   22篇
  1983年   13篇
  1982年   22篇
  1981年   12篇
  1980年   14篇
  1979年   14篇
  1978年   15篇
  1977年   9篇
  1976年   6篇
  1973年   7篇
  1972年   5篇
排序方式: 共有6114条查询结果,搜索用时 15 毫秒
131.
An X‐ray magnetic circular dichroism (XMCD) study performed at the Ho L2,3‐edges in Ho6Fe23 as a function of temperature is presented. It is demonstrated that the anomalous temperature dependence of the Ho L2‐edge XMCD signal is due to the magnetic contribution of Fe atoms. By contrast, the Ho L3‐edge XMCD directly reflects the temperature dependence of the Ho magnetic moment. By combining the XMCD at both Ho L2‐ and L3‐edges, the possibility of determining the temperature dependence of the Fe magnetic moment is demonstrated. Then, both μHo(T) and μFe(T) have been determined by tuning only the absorption L‐edges of Ho. This result opens new possibilities of applying XMCD at these absorption edges to obtain quantitative element‐specific magnetic information that is not directly obtained by other experimental tools.  相似文献   
132.
We consider the statistical properties of solutions of Burgers' equation in the limit of vanishing viscosity, , with Gaussian whitenoise initial data. This system was originally proposed by Burgers[1] as a crude model of hydrodynamic turbulence, and more recently by Zel'dovichet al..[12] to describe the evolution of gravitational matter at large spatio-temporal scales, with shocks playing the role of mass clusters. We present here a rigorous proof of the scaling relationP(s)s 1/2,s1 whereP(s) is the cumulative probability distribution of shock strengths. We also show that the set of spatial locations of shocks is discrete, i.e. has no accumulation points; and establish an upper bound on the tails of the shock-strength distribution, namely 1–P(s)exp{–Cs 3} fors1. Our method draws on a remarkable connection existing between the structure of Burgers turbulence and classical probabilistic work on the convex envelope of Brownian motion and related diffusion processes.Inadvertently the sequel to this article, Statistical Properties of Shocks in Burgers Turbulence, II. Tail Probabilities for Velocities, Shock-Strengths and Rarefaction Intervals has already appeared in an earlier issue of Commun. Math. Phys. (Commun. Math. Phys.169, 45–59 (1995).  相似文献   
133.
This paper deals with the concept of simultaneity in classical and relativistic physics as construed in terms of group-invariant equivalence relations. A full examination of Newton, Galilei and Poincaré invariant equivalence relations in ℝ4 is presented, which provides alternative proofs, additions and occasionally corrections of results in the literature, including Malament’s theorem and some of its variants. It is argued that the interpretation of simultaneity as an invariant equivalence relation, although interesting for its own sake, does not cut in the debate concerning the conventionality of simultaneity in special relativity.  相似文献   
134.
We study the motion of a classical spinning particle (with spin degrees of freedom described by a vector of Grassmann variables) in higher-dimensional general rotating black hole spacetimes with a cosmological constant. In all dimensions n we exhibit n bosonic functionally independent integrals of spinning particle motion, corresponding to explicit and hidden symmetries generated from the principal conformal Killing-Yano tensor. Moreover, we demonstrate that in 4-, 5-, 6-, and 7-dimensional black hole spacetimes such integrals are in involution, proving the bosonic part of the motion integrable. We conjecture that the same conclusion remains valid in all higher dimensions. Our result generalizes the result of Page et?al. [Phys. Rev. Lett. 98, 061102 (2007)] on complete integrability of geodesic motion in these spacetimes.  相似文献   
135.
We study the effects of feebly or nonannihilating weakly interacting dark matter (DM) particles on stars that live in DM environments denser than that of our Sun. We find that the energy transport mechanism induced by DM particles can produce unusual conditions in the cores of main sequence stars, with effects which can potentially be used to probe DM properties. We find that solar mass stars placed in DM densities of ρ(χ)≥10(2) GeV/cm(3) are sensitive to spin-dependent scattering cross section σ(SD)≥10(-37) cm(2) and a DM particle mass as low as m(χ)=5 GeV, accessing a parameter range weakly constrained by current direct detection experiments.  相似文献   
136.
We propose a realistic circuit QED experiment to test the extraction of past-future vacuum entanglement to a pair of superconducting qubits. The qubit P interacts with the quantum field along an open transmission line for an interval T_{on} and then, after a time-lapse T_{off}, the qubit F starts interacting for a time T_{on} in a symmetric fashion. After that, past-future quantum correlations will have transferred to the qubits, even if the qubits do not coexist at the same time. We show that this experiment can be realized with current technology and discuss its utility as a possible implementation of a quantum memory.  相似文献   
137.
This paper evaluates the advantages and the drawbacks deriving from the use of MEMS (micro-electro-mechanical systems) accelerometers for hand-arm and whole-body vibration measurements. Metrological performances of different transducers were assessed through the identification of their frequency response function, linearity, floor noise and sensitivity to thermal and electromagnetic disturbances. Experimental results highlighted a standard instrumental uncertainty (including the nonlinearity) lower than 5% with the single frequency calibration procedure, such a value was reduced to 2%. The temperature effect was negligible and the electromagnetic disturbances sensitivity was comparable to that of the piezoelectric accelerometers. The compatibility of measurements obtained with MEMS accelerometers with those of piezoelectric-based measurement chains was verified for two specific applications. An example of direct transducer fixation on the skin for vibration transmissibility measurements is also presented. Thanks to the MEMS peculiarities – mainly small sizes and low cost – since novel approaches in the vibration monitoring could be pursued. For instance, it is possible to include by design MEMS accelerometers in any hand-held tool at the operator interface, or inside the seats structures of cars, tractors and trucks. This could be a viable solution to easily obtain repeatable exposure measurements and could also provide diagnostic signals for the tools or seats of functional monitoring.  相似文献   
138.
The insertion of a metal-coated tip on the surface of a photonic crystal microcavity is used for simultaneous near field imaging of electric and magnetic fields in photonic crystal nanocavities, via the radiative emission of embedded semiconductor quantum dots (QD). The photoluminescence intensity map directly gives the electric field distribution, to which the electric dipole of the QD is coupled. The magnetic field generates, via Faraday's law, a circular current in the apex of the metallized probe that can be schematized as a ring. The resulting magnetic perturbation of the photonic modes induces a blue shift, which can be used to map the magnetic field, within a single near-field scan.  相似文献   
139.
We prove that the correlations present in a multipartite quantum state have an operational quantum character even if the state is unentangled, as long as it does not simply encode a multipartite classical probability distribution. Said quantumness is revealed by the new task of local broadcasting, i.e., of locally sharing preestablished correlations, which is feasible if and only if correlations are stricly classical. Our operational approach leads to natural definitions of measures for quantumness of correlations. It also reproduces the standard no-broadcasting theorem as a special case.  相似文献   
140.
The presence of shear bands in the deformed material before final annealing is very important for Goss and Cube textures formation in silicon steel [S.C. Paolinelli, M.A. Cunha, J. Magn. Magn. Mater. 255 (2003) pp. 379. [1]; J.T. Park, J.A. Szpunar, Acta Mater., 51 (2003) 3037. [2]]. The increase of the hot-band grain size can increase the number of shear bands, which favor the nucleation of these orientations. In this work, the effect of the hot band grain size variation, promoted by varying the hot rolling finishing temperature, on final structure and magnetic properties was investigated for 3% Si alloy. It was found that the increase of the hot-band grain size increases the occurrence of shear bands and promotes an increase of η fiber fraction and a reduction of γ fiber fraction, improving the magnetic induction. On the other hand, the final grain size is reduced when the hot-band grain size is larger than 190 μm, deteriorating the core loss values in spite of the texture benefits. The reduction of final grain size was explained by the increase of the number of nuclei at the beginning of the recrystallization caused by the increase of shear bands in the deformed material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号