首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3117篇
  免费   97篇
  国内免费   21篇
化学   2143篇
晶体学   20篇
力学   116篇
数学   524篇
物理学   432篇
  2023年   27篇
  2022年   49篇
  2021年   46篇
  2020年   50篇
  2019年   77篇
  2018年   45篇
  2017年   30篇
  2016年   85篇
  2015年   96篇
  2014年   111篇
  2013年   164篇
  2012年   214篇
  2011年   249篇
  2010年   162篇
  2009年   138篇
  2008年   177篇
  2007年   191篇
  2006年   196篇
  2005年   189篇
  2004年   179篇
  2003年   117篇
  2002年   122篇
  2001年   48篇
  2000年   43篇
  1999年   25篇
  1998年   27篇
  1997年   26篇
  1996年   26篇
  1995年   27篇
  1994年   13篇
  1993年   24篇
  1992年   13篇
  1991年   9篇
  1990年   4篇
  1989年   11篇
  1987年   5篇
  1986年   6篇
  1985年   12篇
  1984年   22篇
  1983年   13篇
  1982年   19篇
  1981年   15篇
  1980年   23篇
  1979年   12篇
  1978年   10篇
  1977年   11篇
  1976年   11篇
  1975年   8篇
  1974年   15篇
  1973年   10篇
排序方式: 共有3235条查询结果,搜索用时 3 毫秒
101.
102.
Among luminescence techniques, electrogenerated chemiluminescence (ECL) provides a unique level of manipulation of the luminescent process by controlling the electrochemical trigger. Despite its attractiveness, ECL is by essence a 2D process where light emission is strictly confined to the electrode surface. To overcome this intrinsic limitation, we added a new spatial dimension to the ECL process by generating 3D ECL at the level of millions of micro-emitters dispersed in solution. Each single object is addressed remotely by bipolar electrochemistry and they generate collectively the luminescence in the bulk. Therefore, the entire volume of the solution produces light. To illustrate the generality of this concept, we extended it to a suspension of multi-walled carbon nanotubes where each one acts as an individual ECL nano-emitter. This approach enables a change of paradigm by switching from a surface-limited process to 3D electrogenerated light emission.  相似文献   
103.
Since its introduction in 1994, the preparation of ordered porous polymer films by the breath figure (BF) method has received a considerable interest. The so-called “honeycomb” (HC) films exhibit a hexagonal array of micrometric pores obtained by water droplet condensation during the fast solvent evaporation performed under a humid flow. The main focus of this feature article is to describe the recent advances in the design of honeycomb polymer films by the BF process. We first review the recent studies related to the honeycomb film formation through the exploration of different parameters such as the relative humidity, the polymer concentration, the drying rate, the substrate or the role of interfacial tension. The influence of the architecture and microstructure of the polymer is examined through examples. In this contribution, a special attention is given to the recent articles focused on the preparation of elaborate functional honeycomb-structured polymer films obtained via the simple BF method. In this context, we review the preparation of hierarchical HC films showing either sub- or super-structure, the formation of hybrid HC films by self-assembly of nanoparticles or in situ generation of the inorganic matter, the fluorescence in HC films introduced either by a fluorescent polymer or by fluorescent chemical groups, the elaboration of biomaterials from HC films decorated by glycopolymer and/or showing sensing ability and finally the design of functional polymeric surfaces with either stimuli-responsive or superhydrophobic properties.  相似文献   
104.
The effects of gymnochrome A were tested on the electrical activity of the frog atrial heart muscle. Gymnochrome A (1-5 microM) did not alter the resting potential. Gymnochrome A (5 microM) slowed the initial depolarizing phase of the spontaneously beating action potential. Under voltage-clamp conditions gymnochrome A (5 microM) did not affect the electrical constant of the membrane and the kinetic parameters of the peak Na+ current (INa) recorded in the Ringer solution containing tetraethylammonium (2 mM) and Cd2+ (1 mM) but shifted the membrane potential at which the current both activated and reached its maximal value toward more negative membrane potentials. It did not alter the reversal potential for INa, indicating that the selectivity of the Na+ channels had not changed. These observations suggest that gymnochrome A binds to the membrane and shifts the activation of INa on the voltage axis by modifying the free negative fixed charges present at the membrane surface rather than by occupying a specific site on the Na+ channel. Photoexcited gymnochrome A transiently triggered an early outward current which lengthened the time-to-peak of INa and decreased its amplitude. In addition, photoexcited gymnochrome A blocked the background K+ current. This is, to our knowledge, the first time that such effects are reported on the cardiac muscle. These observations suggest that the photoexcitation of gymnochrome produces physico-chemical effects which lead to intracellular changes. Further experiments are required to determine their nature.  相似文献   
105.
The first synthesis of (+/-)-taxifolial A and iso-caulerpenyne was accomplished. The key steps in the sequence are (1) the stereoselective assembly of a vinyltin derived from butynediol and a functionalized aldehyde and (2) the construction of the dienyne moiety via a Stille cross-coupling.  相似文献   
106.
Filamentous fungi synthesize natural products as an ecological function. In this study, an interesting indigenous fungus producing orange pigment exogenously was investigated in detail as it possesses additional attributes along with colouring properties. An interesting fungus was isolated from a dicot plant, Maytenus rothiana. After a detailed study, the fungal isolate turned out to be a species of Gonatophragmium belonging to the family Acrospermaceae. Based on the morphological, cultural, and sequence-based phylogenetic analysis, the identity of this fungus was confirmed as Gonatophragmium triuniae. Although this fungus grows moderately, it produces good amounts of pigment on an agar medium. The fermented crude extract isolated from G. triuniae has shown antioxidant activity with an IC50 value of 0.99 mg/mL and antibacterial activity against Gram-positive bacteria (with MIC of 3.91 μg/mL against Bacillus subtilis, and 15.6 μg/mL and 31.25 μg/mL for Staphylococcus aureus and Micrococcus luteus, respectively). Dyeing of cotton fabric mordanted with FeSO4 using crude pigment was found to be satisfactory based on visual observation, suggesting its possible use in the textile industry. The orange pigment was purified from the crude extract by preparative HP-TLC. In addition, UV-Vis, FTIR, HRMS and NMR (1H NMR, 13C NMR), COSY, and DEPT analyses revealed the orange pigment to be “1,2-dimethoxy-3H-phenoxazin-3-one” (C14H11NO4, m/z 257). To our understanding, the present study is the first comprehensive report on Gonatophragmium triuniae as a potential pigment producer, reporting “1,2-dimethoxy-3H-phenoxazin-3-one” as the main pigment from the crude hexane extract. Moreover, this is the first study reporting antioxidant, antibacterial, and dyeing potential of crude extract of G. triuniae, suggesting possible potential applications of pigments and other bioactive secondary metabolites of the G. triuniae in textile and pharmaceutical industry.  相似文献   
107.
108.
A theoretical study of SiH(4) activation by Cp(2)LnH complexes for the entire series of lanthanides has been carried out at the DFT-B3PW91 level of theory. The reaction paths corresponding to H/H exchange and silylation, formation of Cp(2)Ln(SiH(3)), have been computed. They both occur via a single-step sigma-bond metathesis mechanism. For the athermal H/H exchange reaction, the calculated activation barrier averages 1.8 kcal.mol(-)(1) relative to the precursor adduct Cp(2)LnH(eta(2)-SiH(4)) for all lanthanide elements. The silylation path is slightly exogenic (DeltaE approximately -6.5 kcal.mol(-1)) with an activation barrier averaging 5.2 kcal.mol(-1) relative to the precursor adduct where SiH(4) is bonded by two Si-H bonds. Both pathways are therefore thermally accessible. The H/H exchange path is calculated to be kinetically more favorable whereas the silylation reaction is thermodynamically preferred. The reactivity of this familly of lanthanide complexes with SiH(4) contrasts strongly with that obtained previously with CH(4). The considerably lower activation barrier for silylation relative to methylation is attributed to the ability of Si to become hypervalent.  相似文献   
109.
Fluorescence imaging in clinical diagnostics and biomedical research relies to a great extent on the use of small organic fluorescent probes. Because of the difficulty of combining fluorescent and molecular-recognition properties, the development of such probes has been severely restricted to a number of well-known fluorescent scaffolds. Here we demonstrate that autofluorescing druglike molecules are a valuable source of bioimaging probes. Combinatorial synthesis and screening of chemical libraries in droplet microarrays allowed the identification of new types of fluorophores. Their concise and clean assembly by a multicomponent reaction presents a unique potential for the one-step synthesis of thousands of structurally diverse fluorescent molecules. Because they are based upon a druglike scaffold, these fluorophores retain their molecular recognition potential and can be used to design specific imaging probes.  相似文献   
110.
We report in this article a comprehensive investigation of the viscoelastic behavior of different natural colloidal clay minerals in aqueous solution. Rheological experiments were carried out under both dynamic and steady-state conditions, allowing us to derive the elasticity and yield stress. Both parameters can be renormalized for all sizes, ionic strength, and type of clay using in a first approach only the volume of the particles. However, applying such a treatment to various clays of similar shapes and sizes yields differences that can be linked to the repulsion strength and charge location in the swelling clays. The stronger the repulsive interactions, the better the orientation of clay particles in flows. In addition, a master linear relationship between the elasticity and yield stress whose value corresponds to a critical deformation of 0.1 was evidenced. Such a relationship may be general for any colloidal suspension of anisometric particles as revealed by the analysis of various experimental data obtained on either disk-shaped or lath- and rod-shaped particles. The particle size dependence of the sol-gel transition was also investigated in detail. To understand why suspensions of larger particles gel at a higher volume fraction, we propose a very simplified view based on the statistical hydrodynamic trapping of a particle by an another one in its neighborhood upon translation and during a short period of time. We show that the key parameter describing this hydrodynamic trapping varies as the cube of the average diameter and captures most features of the sol-gel transition. Finally, we pointed out that in the high shear limit the suspension viscosity is still closely related to electrostatic interactions and follows the same trends as the viscoelastic properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号