首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   0篇
化学   52篇
物理学   48篇
  2023年   1篇
  2022年   1篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   1篇
  2012年   6篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   9篇
  2006年   4篇
  2005年   7篇
  2004年   10篇
  2003年   4篇
  2002年   4篇
  2001年   7篇
  2000年   6篇
  1999年   11篇
  1998年   4篇
  1997年   2篇
  1995年   1篇
  1978年   1篇
  1962年   1篇
  1938年   2篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
31.
We report on what is to our knowledge the first realization of a quasi-phase-matched optical parametric oscillator (OPO) based on a crystal with a cylindrical shape. The main reason for interest in this device is its broad, continuous tuning. In experiments with a 1064-nm pump, the signal tuning range was equal to 525 nm (1515-2040 nm), and the corresponding idler was continuously tuned over 1340 nm (2220-3560 nm). The angular tuning was 26 degrees , with only a minor variation of the OPO threshold over the entire tuning range.  相似文献   
32.
An Yb:KYW laser intra-cavity frequency doubled to the green at 514.7 nm using a periodically poled Rb:KTP crystal with an output power exceeding 1 W is presented. Spectral narrowing and locking at the fundamental wavelength has been achieved by using a volume Bragg grating as the input coupler.  相似文献   
33.
Enriching the surface density of immobilized capture antibodies enhances the detection signal of antibody sandwich microarrays. In this study, we improved the detection sensitivity of our previously developed P-Si (porous silicon) antibody microarray by optimizing concentrations of the capturing antibody. We investigated immunoassays using a P-Si microarray at three different capture antibody (PSA – prostate specific antigen) concentrations, analyzing the influence of the antibody density on the assay detection sensitivity. The LOD (limit of detection) for PSA was 2.5 ng mL−1, 80 pg mL−1, and 800 fg mL−1 when arraying the PSA antibody, H117 at the concentration 15 μg mL−1, 35 μg mL−1, and 154 μg mL−1, respectively. We further investigated PSA spiked into human female serum in the range of 800 fg mL−1 to 500 ng mL−1. The microarray showed a LOD of 800 fg mL−1 and a dynamic range of 800 fg mL−1 to 80 ng mL−1 in serum spiked samples.  相似文献   
34.
As much attention has devoted to the proteome research during the last few years, biomarker discovery has become an increasingly hot area, potentially enabling the development of new assays for diagnosis and prognosis of severe diseases. This is the field of research interest where efforts originating from both academic and industrial groups should jointly work on solutions. In this paper, we would like to demonstrate the fruitful combination of both research domains where the scientific crossroads sprout fresh ideas from the basic research domain and how these are refined and tethered to industrial standards. We will present an approach that is based on novel microfluidic devices, utilizing their benefits in processing small-volume samples. Our biomarker discovery strategy, built around this platform, involves optimized samples processing (based on SPE and sample enrichment) and fast MALDI-MS readout. The identification of novel biomarkers at low-abundance level has been achieved by the utilization of a miniaturized sample handling platform, which offers clean-up and enrichment of proteins in one step. Complete automation has been realized in the form of a unique robotic instrumentation that is able to extract and transfer 96 samples onto standard MALDI target plates with high throughput. The developed platform was operated with a 60 sample turnaround per hour allowing sensitivities in femtomol regions of medium- and low-abundant target proteins from clinical studies on samples of multiple sclerosis and gastroesophageal reflux disease. Several proteins have been identified as new biomarkers from cerebrospinal fluid and esophagus epithelial cells.  相似文献   
35.
Acoustic standing wave technology combined with microtechnology opens up new areas for the development of advanced particle and cell separating microfluidic systems. This tutorial review outlines the fundamental work performed on continuous flow acoustic standing wave separation of particles in macro scale systems. The transition to the microchip format is further surveyed, where both fabrication and design issues are discussed. The acoustic technology offers attractive features, such as reasonable throughput and ability to separate particles in a size domain of about tenths of micrometers to tens of micrometers. Examples of different particle separation modes enabled in microfluidic chips, utilizing standing wave technology, are described along a discussion of several potential applications in life science research and in the medical clinic. Chip integrated acoustic standing wave separation technology is still in its infancy and it can be anticipated that new laboratory standards very well may emerge from the current research.  相似文献   
36.
An efficient nanosecond optical parametric oscillator (OPO) with output energies of 0.75 mJ using a periodically poled KTiOPO4 crystal pumped at 532 nm and generating narrowband output continuously tunable over the range of 6.8 THz, between 1053 nm and 1075 nm, is demonstrated by employing a transversely-chirped volume Bragg grating. The tunable reflectivity spectrum of the chirped volume Bragg grating allowed a smooth transition between singly-resonant and doubly-resonant operation of the OPO without cavity rearrangement. This gave a unique possibility to experimentally verify theoretical predictions regarding the efficiency of type-I and type-0 phase matched degenerate OPOs pumped by multimode Q-switched lasers.  相似文献   
37.
38.
Efficient high-power operation of double-clad Er,Yb-doped fiber lasers with fixed-wavelength and wavelength-tunable resonator configurations using volume Bragg gratings for wavelength selection are reported. The fixed-wavelength laser yielded a maximum output power of 103 W at 1552.6 nm with a linewidth of ~0.4 nm (FWHM) for a launched pump power of 290 W at 976 nm. The wavelength-tunable laser could be tuned from 1528 to 1550 nm with a linewidth of 0.2 nm (FWHM) and with output power in the range 30-38 W for a launched pump power of 120 W. The prospects for further improvement in performance are considered.  相似文献   
39.
4 (PPKTP). We generated 12 μW of radiation tunable around 1.6 μm by difference-frequency mixing of the outputs of a frequency-doubled Nd:YLF laser at 523 nm (240 mW) and a tunable Ti:sapphire laser near 760 nm (340 mW). A temperature tuning rate of 0.73 nm/°C for the generated wavelength and a FWHM temperature acceptance bandwidth of 6.9 °C cm was observed. The effective d33 coefficient was estimated to be ∼5 pm/V. Received: 02 September 1998  相似文献   
40.
A method to continuously separate different particle types in a suspension is reported. Acoustic forces in a standing wave field were utilized to discriminate lipid particles from erythrocytes in whole blood. The presented technology proposes a new method of cleaning, i.e. removing lipid emboli from, shed blood recovered during cardiac surgery. Blood contaminated with lipid particles enter a laminar flow micro channel. Erythrocytes and lipid particles suspended in blood plasma are exposed to a half wavelength standing wave field orthogonal to the direction of flow as they pass through the channel. Because of differences in compressibility and density the two particle types move in different directions, the erythrocytes towards the centre of the channel and the lipid particles towards the side walls. The end of the channel is split into three outlet channels conducting the erythrocytes to the centre outlet and the lipid particles to the side outlets due to the laminar flow profile. The separation channel was evaluated in vitro using polyamide spheres suspended in water, showing separation efficiencies approaching 100%. The system was also evaluated on whole blood using tritium labelled lipid particles added to bovine blood. More than 80% of the lipid particles could be removed while approximately 70% of the erythrocytes were collected in one third of the original fluid volume. The study showed that the further reduced micro channel dimensions provided improved performance with respect to; (i) separation efficiency, (ii) actuation voltage, and (iii) volumetric throughput as compared to earlier work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号