首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4223篇
  免费   188篇
  国内免费   16篇
化学   3461篇
晶体学   16篇
力学   67篇
数学   425篇
物理学   458篇
  2023年   50篇
  2022年   138篇
  2021年   177篇
  2020年   141篇
  2019年   120篇
  2018年   59篇
  2017年   56篇
  2016年   175篇
  2015年   179篇
  2014年   163篇
  2013年   236篇
  2012年   337篇
  2011年   371篇
  2010年   210篇
  2009年   172篇
  2008年   291篇
  2007年   257篇
  2006年   254篇
  2005年   181篇
  2004年   189篇
  2003年   148篇
  2002年   125篇
  2001年   27篇
  2000年   29篇
  1999年   26篇
  1998年   19篇
  1997年   21篇
  1996年   24篇
  1995年   20篇
  1994年   16篇
  1993年   5篇
  1991年   6篇
  1990年   6篇
  1989年   9篇
  1988年   5篇
  1987年   8篇
  1986年   10篇
  1985年   19篇
  1984年   18篇
  1983年   16篇
  1982年   17篇
  1981年   18篇
  1980年   10篇
  1979年   8篇
  1978年   7篇
  1977年   13篇
  1976年   7篇
  1975年   6篇
  1974年   7篇
  1973年   4篇
排序方式: 共有4427条查询结果,搜索用时 0 毫秒
121.
Hybrid organic–inorganic solids represent an important class of engineering materials, usually prepared by sol–gel processes by cross‐reaction between organic and inorganic precursors. The choice of the two components and control of the reaction conditions (especially pH value) allow the synthesis of hybrid materials with novel properties and functionalities. 3‐Glycidoxypropyltrimethoxysilane (GPTMS) is one of the most commonly used organic silanes for hybrid‐material fabrication. Herein, the reactivity of GPTMS in water at different pH values (pH 2–11) was deeply investigated for the first time by solution‐state multinuclear NMR spectroscopic and mass spectrometric analysis. The extent of the different and competing reactions that take place as a function of the pH value was elucidated. The NMR spectroscopic and mass spectrometric data clearly indicate that the pH value determines the kinetics of epoxide hydrolysis versus silicon condensation. Under slighly acidic conditions, the epoxy‐ring hydrolysis is kinetically more favourable than the formation of the silica network. In contrast, under basic conditions, silicon condensation is the main reaction that takes place. Full characterisation of the formed intermediates was carried out by using NMR spectroscopic and mass spectrometric analysis. These results indicate that strict control of the pH values allows tuning of the reactivity of the organic and inorganic moities, thus laying the foundations for the design and synthesis of sol–gel hybrid biomaterials with tuneable properties.  相似文献   
122.
Adding a physiological representation to a cognitive architecture offers an attractive approach to modeling the effects of stress on cognition. We introduce ACT-R/Φ, an extended version of the ACT-R cognitive architecture that includes an integrative model of physiology. The extension allows the representation of how physiology and cognition interact. This substrate was used to represent potential effects of a startle response and task-based stress during a mental arithmetic (subtraction) task. We compare predictions from two models loaded into the new hybrid architecture to models previously developed within ACT-R. General behavior differed between models in that the ACT-R/Φ models had dynamic declarative memory noise over the course of the task based on varying epinephrine levels. They attempted more subtractions but were less accurate; this more closely matched human performance than the previous ACT-R models. Using ACT-R/Φ allows a more tractable integration of current physiological and cognitive perspectives on stress. ACT-R/Φ also permits further exploration of the interaction between cognition and physiology, and the emergent effects on behavior caused by the interaction among physiological subsystems. This extension is useful for anyone exploring how the human mind can occur in and be influenced by the physical universe.  相似文献   
123.
We designed an allele‐specific amplification protocol to optimize Y‐chromosome SNP typing, which is an unavoidable step for defining the phylogenetic status of paternal lineages. It allows the simultaneous highly specific definition of up to six mutations in a single reaction by amplification fragment length polymorphism (AFLP) without the need of specialized equipment, at a considerably lower cost than that based on single‐base primer extension (SNaPshot?) technology or PCR‐RFLP systems, requiring as little as 0.5 ng DNA and compatible with the small fragments characteristic of low‐quality DNA. By designation of two primers recognizing the derived and ancestral state for each SNP, which can be differentiated by size by the addition of a noncomplementary nucleotide tail, we could define major Y clades E, F, K, R, Q, and subhaplogroups R1, R1a, R1b, R1b1b, R1b1c, J1, J2, G1, G2, I1, Q1a3, and Q1a3a1 through amplification fragments that ranged between 60 and 158bp.  相似文献   
124.
This pilot study was performed to study the main metabolic reactions of four synthetic cannabinoids: JWH-015, JWH-098, JWH-251, and JWH-307 in order to setup a screening method for the detection of main metabolites in biological fluids. In silico prediction of main metabolic reactions was performed using MetaSite? software. To evaluate the agreement between software prediction and experimental reactions, we performed in vitro experiments on the same JWHs using rat liver slices. The obtained samples were analyzed by liquid chromatography-quadrupole time-of-flight and the identification of metabolites was executed using Mass-MetaSite? software that automatically assigned the metabolite structures to the peaks detected based on their accurate masses and fragmentation. A comparison between the experimental findings and the in silico metabolism prediction using MetaSite? software showed a good accordance between experimental and in silico data. Thus, the use of in silico metabolism prediction might represent a useful tool for the forensic and clinical toxicologist to identify possible main biomarkers for synthetic cannabinoids in biological fluids, especially urine, following their administration.
Figure
JWH-098: Most probable predicted sites of metabolism and main metabolites formed in vitro  相似文献   
125.
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders which have a severe life-long effect on behavior and social functioning, and which are associated with metabolic abnormalities. Their diagnosis is on the basis of behavioral and developmental signs usually detected before three years of age, and there is no reliable biological marker. The objective of this study was to establish the volatile urinary metabolomic profiles of 24 autistic children and 21 healthy children (control group) to investigate volatile organic compounds (VOCs) as potential biomarkers for ASDs. Solid-phase microextraction (SPME) using DVB/CAR/PDMS sorbent coupled with gas chromatography–mass spectrometry was used to obtain the metabolomic information patterns. Urine samples were analyzed under both acid and alkaline pH, to profile a range of urinary components with different physicochemical properties. Multivariate statistics techniques were applied to bioanalytical data to visualize clusters of cases and to detect the VOCs able to differentiate autistic patients from healthy children. In particular, orthogonal projections to latent structures discriminant analysis (OPLS-DA) achieved very good separation between autistic and control groups under both acidic and alkaline pH, identifying discriminating metabolites. Among these, 3-methyl-cyclopentanone, 3-methyl-butanal, 2-methyl-butanal, and hexane under acid conditions, and 2-methyl-pyrazine, 2,3-dimethyl-pyrazine, and isoxazolo under alkaline pH had statistically higher levels in urine samples from autistic children than from the control group. Further investigation with a higher number of patients should be performed to outline the metabolic origins of these variables, define a possible association with ASDs, and verify the usefulness of these variables for early-stage diagnosis.
Figure
?  相似文献   
126.
Bioluminescent labels can be especially useful for in vivo and live animal studies due to the negligible bioluminescence background in cells and most animals, and the non-toxicity of bioluminescent reporter systems. Significant thermal stability of bioluminescent labels is essential, however, due to the longitudinal nature and physiological temperature conditions of many bioluminescent-based studies. To improve the thermostability of the bioluminescent protein aequorin, we employed random and rational mutagenesis strategies to create two thermostable double mutants, S32T/E156V and M36I/E146K, and a particularly thermostable quadruple mutant, S32T/E156V/Q168R/L170I. The double aequorin mutants, S32T/E156V and M36I/E146K, retained 4 and 2.75 times more of their initial bioluminescence activity than wild-type aequorin during thermostability studies at 37 °C. Moreover, the quadruple aequorin mutant, S32T/E156V/Q168R/L170I, exhibited more thermostability at a variety of temperatures than either double mutant alone, producing the most thermostable aequorin mutant identified thus far.  相似文献   
127.
Yttrium silicate doped with cerium (Y2SiO5:Ce) was obtained from Y-Ce-Si based precursors prepared by the simultaneous addition of reagents (SimAdd) technique. The synthesis of the precursors was done in well controlled conditions using ammonium oxalate, ammonium carbonate or urea as precipitating agents. Results regarding the influence of precipitating agents on the morpho structural and photoluminescent characteristics of Y2SiO5:Ce are reported. The TG analysis in correlation with EGA, FT-IR and XRD investigations reveals the formation of oxalate, hydroxy-carbonate or hydroxy-nitrate based compounds, the same as the conversion of the precursors to well crystallized yttrium silicate. XRD patterns show that the precursors are amorphous except for the sample prepared with ammonium oxalate. Depending on the precipitation conditions, the phosphors phase composition varies from single phase (X2-Y2SiO5) to a mixture of phases (X2-Y2SiO5, X1-Y2SiO5, Y2O3). Under UV excitation, phosphors exhibit the specific blue emission of cerium with an intensity that varies from 175.8% (urea) to 96.0% (ammonium carbonate) and to 78.5% (ammonium oxalate). The emission intensity depends on the phase purity and order degree of the phosphors. PACS Classification codes:78.55 Hx, 81.20Fw   相似文献   
128.
Cellulose - In this study, for the first time, the experimental technique of positron annihilation lifetime spectroscopy (PALS) has been applied to monitor in situ the microstructural changes of...  相似文献   
129.
130.
Due to their potential binding sites, barbituric acid (BA) and its derivatives have been used in metal coordination chemistry. Yet their abilities to recognize anions remain unexplored. In this work, we were able to identify four structural features of barbiturates that are responsible for a certain anion affinity. The set of coordination interactions can be finely tuned with covalent decorations at the methylene group. DFT-D computations at the BLYP-D3(BJ)/aug-cc-pVDZ level of theory show that the C−H bond is as effective as the N−H bond to coordinate chloride. An analysis of the electron charge density at the C−H⋅⋅⋅Cl and N−H⋅⋅⋅Cl bond critical points elucidates their similarities in covalent character. Our results reveal that the special acidity of the C−H bond shows up when the methylene group moves out of the ring plane and it is mainly governed by the orbital interaction energy. The amide and carboxyl groups are the best choices to coordinate the ion when they act together with the C−H bond. We finally show how can we use this information to rationally improve the recognition capability of a small cage-like complex that is able to coordinate NaCl.  相似文献   
[首页] « 上一页 [8] [9] [10] [11] [12] 13 [14] [15] [16] [17] [18] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号