首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10479篇
  免费   765篇
  国内免费   372篇
化学   7325篇
晶体学   74篇
力学   369篇
综合类   40篇
数学   1253篇
物理学   2555篇
  2023年   115篇
  2022年   299篇
  2021年   378篇
  2020年   385篇
  2019年   325篇
  2018年   232篇
  2017年   219篇
  2016年   427篇
  2015年   445篇
  2014年   414篇
  2013年   666篇
  2012年   768篇
  2011年   882篇
  2010年   532篇
  2009年   492篇
  2008年   664篇
  2007年   614篇
  2006年   575篇
  2005年   461篇
  2004年   415篇
  2003年   342篇
  2002年   287篇
  2001年   167篇
  2000年   114篇
  1999年   124篇
  1998年   79篇
  1997年   74篇
  1996年   93篇
  1995年   77篇
  1994年   86篇
  1993年   60篇
  1992年   52篇
  1991年   45篇
  1990年   47篇
  1989年   39篇
  1988年   27篇
  1987年   31篇
  1986年   28篇
  1985年   49篇
  1984年   58篇
  1983年   32篇
  1982年   53篇
  1981年   36篇
  1980年   32篇
  1979年   46篇
  1978年   33篇
  1977年   28篇
  1976年   31篇
  1975年   21篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Dioscin (DIS), one of the most abundant bioactive steroidal saponins in Dioscorea sp., is used as a complementary medicine to treat coronary disease and angina pectoris in China. Although the pharmacological activities and pharmacokinetics of DIS have been well demonstrated, information regarding the final metabolic fates is very limited. This study investigated the in vivo metabolic profiles of DIS after oral administration by ultra‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry method. The structures of the metabolites were identified and tentatively characterized by means of comparing the molecular mass, retention time and fragmentation pattern of the analytes with those of the parent compound. A total of eight metabolites, including seven phase I and one phase II metabolites, were detected and tentatively identified for the first time. Oxidation, deglycosylation and glucuronidation were found to be the major metabolic processes of the compound in rats. In addition, a possible metabolic pathway on the biotransformation of DIS in vivo was proposed. This study provides valuable and new information on the metabolism of DIS, which will be helpful for further understanding its mechanism of action. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
12.
13.
Multidrug resistance protein-4 (MRP4) belongs to the ABC transporter superfamily and promotes the transport of xenobiotics including drugs. A non-synonymous single nucleotide polymorphisms (nsSNPs) in the ABCC4 gene can promote changes in the structure and function of MRP4. In this work, the interaction of certain endogen substrates, drug substrates, and inhibitors with wild type-MRP4 (WT-MRP4) and its variants G187W and Y556C were studied to determine differences in the intermolecular interactions and affinity related to SNPs using protein threading modeling, molecular docking, all-atom, coarse grained, and umbrella sampling molecular dynamics simulations (AA-MDS and CG-MDS, respectively). The results showed that the three MRP4 structures had significantly different conformations at given sites, leading to differences in the docking scores (DS) and binding sites of three different groups of molecules. Folic acid (FA) had the highest variation in DS on G187W concerning WT-MRP4. WT-MRP4, G187W, Y556C, and FA had different conformations through 25 ns AA-MD. Umbrella sampling simulations indicated that the Y556C-FA complex was the most stable one with or without ATP. In Y556C, the cyclic adenosine monophosphate (cAMP) and ceefourin-1 binding sites are located out of the entrance of the inner cavity, which suggests that both cAMP and ceefourin-1 may not be transported. The binding site for cAMP and ceefourin-1 is quite similar and the affinity (binding energy) of ceefourin-1 to WT-MRP4, G187W, and Y556C is greater than the affinity of cAMP, which may suggest that ceefourin-1 works as a competitive inhibitor. In conclusion, the nsSNPs G187W and Y556C lead to changes in protein conformation, which modifies the ligand binding site, DS, and binding energy.  相似文献   
14.
15.
16.
17.
Abstract

Gastrodigenin, also known as 4-hydroxybenzyl alcohol (HBA), is one of the main components of Gastrodia elata, which is a perfect lead compound of natural products. In order to get new active compounds, we modified the structure of HBA through esterification with carboxylic acid, and got a series of derivatives in which 4-hydroxybenzyl alcohol 2-naphthoate (NHBA) showed stronger antidepressant activity than HBA. In this paper, we firstly evaluated the antidepressant activity of NHBA by tail suspension test (TST) and forced swimming test (FST). Then, we carried out the biochemical assay and western blot to determine its mechanism. The results displayed that NHBA could increase the content of serotonin, dopamine, norepinephrine, γ-aminobutyric acid, brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) in mice brain. It suggested that NHBA exhibited an antidepressant-like effect through monoaminergic system, GABAergic system and BDNF/TrkB signaling pathways.  相似文献   
18.
木质素在塑料中的应用   总被引:11,自引:0,他引:11  
总结了国内外近10年来木质素在塑料中的应用进展,重点对木质素在PVC、PP、PE、PF、PU等5个方面的研究成果进行了系统阐述,并对该技术的发展方向进行了分析预测。  相似文献   
19.
A comparative electron paramagnetic resonance (EPR) study has been performed on a series of structurally related molecular triads which undergo photoinduced electron transfer and differ one from the other in terms of the acceptor or donor moieties. The molecular triads, C-P-C60, TTF-P-C60 and C-P-PF, share the same free-base, tetraarylporphyrin (P) as the primary electron donor, which after light excitation initiates the electron transfer process, but differ either in terms of the electron acceptor (fullerene derivative, C60, versus fluorinated free-base porphyrin, PF), or in terms of the final electron donor (carotenoid polyene, C, versus tetrathiafulvalene, TTF). All these molecular triads can be considered artificial photosynthetic reaction centers in their ability to mimic several key properties of the reaction center primary photochemistry. Photoinduced charge separation and recombination have been followed by time-resolved EPR in a glass of 2-methyltetrahydrofuran and in the nematic phase of the uniaxial liquid crystal E-7. All the triads undergo photoinduced electron transfer, with the generation of charge-separated states in both the low-dielectric environment of the 2-methyl-tetrahydrofuran glass and in anisotropic E-7 medium. Different photochemical pathways have been recognized depending on the specific donor and acceptor moieties constituting the molecular triads. In the presence of the tetrathiafulvalene electron donor singlet- and triplet-initiated electron transfer routes are concurrently active. Recombination to the low-lying carotenoid triplet state occurs in the carotene-based triads, while singlet recombination is the only active route for the TTF-P-C60 triad, where a low-lying triplet state is lacking. Long-lived charge separation has been observed in the case of TTF-P-C60: about 8 μs for the singlet-born radical pair in the glassy isotropic matrix and about 7 μs for the triplet-born radical pair in the nematic phase of E-7. For all the molecular triads, a weak exchange interaction (J?1 G) between the electrons in the final spin-correlated radical pair has been evaluated by simulation of the EPR spectra, providing evidence for superexchange electronic interactions mediated by the tetraarylporphyrin bridge.  相似文献   
20.
By extending the notion of mixed states to functionals acting on the space of observables with diagonal singularity we obtain a well-defined complex spectral decomposition of the time evolution for a quantum decaying system. In this formalism, generalized Gamow states are obtained with well-defined physical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号