首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   550篇
  免费   2篇
  国内免费   3篇
化学   326篇
力学   25篇
数学   47篇
物理学   157篇
  2021年   3篇
  2020年   5篇
  2018年   7篇
  2017年   6篇
  2016年   9篇
  2015年   10篇
  2014年   9篇
  2013年   31篇
  2012年   19篇
  2011年   12篇
  2010年   20篇
  2009年   13篇
  2008年   28篇
  2007年   26篇
  2006年   17篇
  2005年   35篇
  2004年   25篇
  2003年   13篇
  2002年   11篇
  2001年   20篇
  2000年   15篇
  1999年   20篇
  1998年   11篇
  1997年   11篇
  1996年   7篇
  1995年   5篇
  1994年   6篇
  1993年   9篇
  1992年   8篇
  1991年   11篇
  1990年   6篇
  1989年   6篇
  1988年   4篇
  1987年   5篇
  1986年   5篇
  1985年   10篇
  1984年   6篇
  1983年   6篇
  1982年   7篇
  1981年   4篇
  1980年   6篇
  1979年   5篇
  1978年   4篇
  1977年   10篇
  1976年   6篇
  1975年   6篇
  1974年   6篇
  1973年   6篇
  1967年   4篇
  1966年   5篇
排序方式: 共有555条查询结果,搜索用时 15 毫秒
551.
Polar lipids from aqueous liquid-crystalline phases which are the basis for the understanding of their functionality in technical applications. The structural characteristics of these phases and the relation between chemical structure of lipid molecules and their phase properties are reviewed. Special attention is given to new results on cubic phases, the most complex of lipid-water phases. The lipid bilayer is curved in space so that there are no selfintersections. There are two water-channel systems separated by the bilayer. The characteristic feature of the cubic phases is that the lipid bilayer has zero average curvature in all points.  相似文献   
552.
Aqueous dispersions of colloidal aggregates of liquid-crystalline lipid-water phases are described. The lamellar liquid-crystalline phase can form liposomal dispersions, which are wellknown from extensive studies of these particles in drug delivery. Less is known about dispersions of cubic and hexagonal phases. The preparation of such colloidal dispersions, their structure and physical properties are summerised. The dispersed cubic phase is compared to liposomal dispersions, and it is concluded that an important application of the cubic particles will involve encapsulation of proteins and protection of their native conformation.  相似文献   
553.
A new, robust method for measuring the average pore size of water-swollen, cellulose I rich fibres is presented. This method is based on the results of solid-state NMR, which measures the specific surface area (area/solids mass) of water-swollen samples, and of the fibre saturation point (FSP) method, which measures the pore volume (water mass/solids mass) of water-swollen samples. These results are suitable to combine since they are both recorded on water-swollen fibres in excess water, and neither requires the assumption of any particular pore geometry. The new method was used for three model samples and reasonable average pore size measurements were obtained for all of them. The structural characterization of water-swollen samples was compared with the dry structure of fibres as revealed using BET nitrogen gas adsorption after a liquid exchange procedure and careful drying. It was concluded that the structure of the water-swollen fibres sets an upper limit on what is obtainable in the dry state.  相似文献   
554.
The O,O′-diethyl dithiophosphate complex of tetraphenylantimony(V) [Sb(C6H5)4{S2P(OC2H5)2}] (I) and its benzene-solvated form I · 1/2C6H6 (II) were synthesized and studied by high-resolution solid-state 13C and 31P NMR (MAS NMR). The diethyl dithiophosphate (Dtph) groups in I and II were quantitatively characterized by the 31P chemical shift anisotropy (δaniso), the asymmetry parameter (η), and the principal values of chemical shift tensors (δ xx , δ yy , δ zz ). The calculation of the anisotropy parameters included construction of χ2 statistic diagrams from full 31P MAS NMR spectra. In both complexes, the Dtph groups were found to have mainly axially symmetric 31P chemical shift tensors (for δ zz < δ xx ≈ δ yy ) with similar anisotropy parameters (δaniso and η), which is due to their identical S-monodentate function. According to X-ray diffraction data, II has a trigonal bipyramidal (TBP) molecular structure with Smonodentate coordination of Dtph in the TBP axial position and outer-sphere position of the benzene molecule. The desorption of the outer-sphere benzene solvent molecules from structure II, which was noted in MAS NMR experiment, passes through the formation of three intermediate solvated forms with benzene content n < 1/2.  相似文献   
555.
In this work, we use numerical simulation and linear inviscid theory to study the thermodynamic field generated by the interaction of a shock wave with homogeneous isotropic turbulence. Fluctuations in density, pressure, temperature and entropy can play an important role in shock-induced mixing, combustion and energy transfer processes. Data from shock-captured direct numerical simulations (scDNS) are used to investigate the variation of thermodynamic fluctuations for varying shock strengths, and the results are compared with linear interaction analysis (LIA). The density, pressure and temperature variances attain large values at the shock, followed by, in general, a rapid decay in the downstream flow. The rapid variation behind the shock makes it difficult to compare numerical results with theoretical predictions. A threshold method based on instantaneous shock dilatation is used to overcome this problem, and it gives excellent match between scDNS and LIA. We find cases with non-monotonic variation with Mach number as well as local peaks in density fluctuations behind the shock. These are explained in terms of the contribution of the post-shock acoustic and entropy modes in the LIA solution and their cross-correlation. Budget of the transport equations reveals interesting insight into the physics governing the thermodynamic field behind the shock wave. It is found that the variances are primarily determined by the competing effects of dilatational and dissipation mechanisms. The dominant mechanisms are identified for a range of conditions, and their implication for developing predictive models is highlighted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号