首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2322篇
  免费   78篇
  国内免费   16篇
化学   1635篇
晶体学   16篇
力学   57篇
数学   417篇
物理学   291篇
  2023年   20篇
  2022年   28篇
  2021年   37篇
  2020年   57篇
  2019年   50篇
  2018年   15篇
  2017年   26篇
  2016年   73篇
  2015年   68篇
  2014年   78篇
  2013年   107篇
  2012年   127篇
  2011年   171篇
  2010年   88篇
  2009年   111篇
  2008年   157篇
  2007年   134篇
  2006年   138篇
  2005年   103篇
  2004年   114篇
  2003年   76篇
  2002年   80篇
  2001年   33篇
  2000年   33篇
  1999年   27篇
  1998年   27篇
  1997年   21篇
  1996年   22篇
  1995年   19篇
  1994年   10篇
  1993年   12篇
  1992年   14篇
  1991年   12篇
  1990年   11篇
  1989年   12篇
  1988年   11篇
  1987年   21篇
  1986年   11篇
  1985年   13篇
  1984年   19篇
  1983年   21篇
  1982年   12篇
  1981年   17篇
  1980年   18篇
  1979年   12篇
  1977年   12篇
  1975年   10篇
  1973年   8篇
  1972年   10篇
  1956年   8篇
排序方式: 共有2416条查询结果,搜索用时 93 毫秒
11.
12.
The field of photonic crystals has, over the past few years, received dramatically increased attention. Photonic crystals are artificially engineered structures that exhibit a periodic variation in one, two, or three dimensions of the dielectric constant, with a period of the order of the pertinent light wavelength. Such structures in three dimensions should exhibit properties similar to solid-state electronic crystals, such as bandgaps, in other words wavelength regions where light cannot propagate in any direction. By introducing defects into the periodic arrangement, the photonic crystals exhibit properties analogous to those of solid-state crystals. The basic feature of a photonic bandgap was indeed experimentally demonstrated in the beginning of the 1990s, and sparked a large interest in, and in many ways revitalized, photonics research. There are several reasons for this attention. One is that photonic crystals, in their own right, offer a proliferation of challenging research tasks, involving a multitude of disciplines, such as electromagnetic theory, nanofabrication, semi-conductor technology, materials science, biotechnology, to name a few. Another reason is given by the somewhat more down-to-earth expectations that photonics crystals will create unique opportunities for novel devices and applications, and contribute to solving some of the issues that have plagued photonics such as large physical sizes, comparatively low functionality, and high costs. Herein, we will treat some basics of photonic crystal structures and discuss the state-of-the-art in fabrication as well give some examples of devices with unique properties, due to the use of photonic crystals. We will also point out some of the problems that still remain to be solved, and give a view on where photonic crystals currently stand.  相似文献   
13.
14.
15.
16.
17.
Summary 1,2,3,4,7,7-Hexachlorobicyclo[2.2.1] hepta2, 5- diene, a starting material for the synthesis of the insecticides isodrin and endrin, was prepared by condensation of hexachlorocyclopentadiene with acetylene under pressure.  相似文献   
18.
19.
Self-sensitisation of photo-oxygen evolution occurs in aqueous dispersions of silver zeolites. In presence of Cl?, chlorine is the photoproduct in acidic medium, and the same type of self-sensitisation occurs. Self-sensitisation means that systems which are first insensitive to light of a certain wavelength become photo-active after they have been illuminated by light of higher energy. For a better understanding of silver zeolites, we have carried out EH-MO calculations on the 6–6 subunit (SBU) of a zeolite, on the 6–6 SBU with an Ag-atom in the center, on the 6–6 SBU with one Ag-atom in the center and one outside on top of the hexagon, and finally on another with one Ag-atom in the center and two Ag-atoms outside, each on top of a hexagon. The Ag0 in the cage of the 6–6 SBU is significantly polarized by the 6–6 SBU environment. The energy barrier to escape the 6–6 SBU is 0.8 eV for Ag0 and 0.5 eV for Ag+. The HOMO of the Ag(6–6 SBU) is a totally symmetric 5s* orbital and the LUMO is a 5pz* type. 5pz*←5s* electronic excitation reduces the energy barrier and allows an (Ag0)* to exit the 6–6 SBU, provided the excited-state lifetime is long enough. The MO picture predicts low-energy charge-transfer transitions from the zeolite framework to the 5s* orbital. The highest occupied orbitals of the zeolite framework are localized on the O-atoms. Interactions between an Ag-atom in the 6–6 SBU and one or two external Ag-atoms are discussed.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号