首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   18篇
  国内免费   1篇
化学   130篇
力学   4篇
数学   37篇
物理学   23篇
  2024年   1篇
  2023年   4篇
  2022年   2篇
  2021年   7篇
  2020年   16篇
  2019年   5篇
  2018年   5篇
  2017年   4篇
  2016年   14篇
  2015年   5篇
  2014年   15篇
  2013年   13篇
  2012年   28篇
  2011年   17篇
  2010年   7篇
  2009年   6篇
  2008年   9篇
  2007年   8篇
  2006年   4篇
  2005年   2篇
  2004年   8篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有194条查询结果,搜索用时 687 毫秒
41.
The incorporation of impurities during the chemical synthesis of nanomaterials is usually uncontrolled and rarely reported because of the formidable challenge in measuring trace amounts of often light elements with sub-nanometer spatial resolution. And yet, these foreign elements (introduced by doping, for example) influence functional properties. We demonstrate how the hydrothermal growth and a partial reduction reaction on hollow TiO2 nanowires leads to the introduction of parts per millions of boron, sodium, and nitrogen. This doping explains the presence of oxygen vacancies and reduced Ti states at the surface, which enhance the functional properties of TiO2. Our results were obtained on model metal oxide nanomaterials and they shed light on a general process that leads to the uncontrolled incorporation of trace impurities in TiO2, thereby, having a strong effect on applications in energy-harvesting.  相似文献   
42.
Ultrafine aluminum powder was identified as very promising fuels for novel energetic materials formulations. However, the large specific surface area of this powder facilitates its oxidation and greatly reduces its shelf life. Therefore, different coating processes were proposed to solve this problem. The rheology of viscous suspensions of nanoparticles still remains poorly understood and the effect of the coating of such particles on the flow behavior is even more difficult to assess. We have studied the rheology of ultrafine aluminum suspensions in three low molecular weight polymers of different viscosities: a hydroxy-terminated polybutadiene, a polypropylene glycol, and a polysiloxane. The nanosize aluminum powder was previously coated by a thin layer of high-density polyethylene using an in situ polymerization process. The rheological characterization of the suspensions was conducted by the means of steady and oscillatory shear flow measurements for noncoated and coated particles. The effect of the coating process on the rheology of the suspensions is discussed in terms of the interactions between the particles and the suspending fluids.  相似文献   
43.
The quality of infrared microscopy and spectroscopy data collected at synchrotron based sources is strongly dependent on signal-to-noise. We have successfully identified and suppressed several noise sources affecting beamlines 1.4.2, 1.4.3, and 1.4.4 at the advanced light source (ALS), resulting in a significant increase in the quality of FTIR spectra obtained. In this paper, we present our methods of noise source analysis, the negative effect of noise on the infrared beam quality, and the techniques used to reduce the noise. These include reducing the phase noise in the storage ring radio-frequency (RF) system, installing an active mirror feedback system, analyzing and changing physical mounts to better isolate portions of the beamline optics from low-frequency environmental noise, and modifying the input signals to the main ALS RF system. We also discuss the relationship between electron beam energy oscillations at a point of dispersion and infrared beamline noise.  相似文献   
44.
Today, in the presence of global warming, understanding how plants respond to drought stress is essential to meet the challenge of developing new cultivars and new irrigation strategies, consistent with the maintenance of crop productivity. In this context, the study of the relation between plants and water is of central interest for modeling their responses to biotic and abiotic constraints. Paradoxically, there are very few direct and noninvasive methods to quantify and measure the level and the flow of water in plants. The present work aims to develop a noninvasive methodology for living plant based on nuclear magnetic resonance (NMR) at low magnetic field and imaging (MRI) to tackle the issue of water quantity in plants. For this purpose, a portable NMR device measuring the signal level at 8 mT was built. This instrument addresses specific challenges such as miniaturization, accessibility, and overheating in order to maintain the plant intact of time over long period. Time dependence of the water content in sorghum plants is reported under abiotic stress as well as the fraction of transpirable soil water and the photosynthesis activity through the leaves. At high magnetic field (9.4 T), T2 maps were acquired on the same sorghum plants at two time points. The combination of these approaches allows us to identify ecophysiological biomarkers of drought stress. One particular interesting result concerns the spatial distribution of water in two anatomically contrasted sorghum genotypes.  相似文献   
45.
46.
A chemistry platform for the fast continuous synthesis of III–V quantum dots is demonstrated. III-nitride QDs are prepared by using short residence times (less than 30 s) in a one-step continuous process with supercritical solvents. GaN QDs prepared via this route exhibit strong UV photoluminescence with a structuring of the emission signal at low temperature (5 K), confirming their high quality. An example of metal site substitution is given with the synthesis of InxGa1-xN solid solution. A continuous bandgap shift towards lower energies is demonstrated when increasing the indium content with strong photoluminescence signals from UV to visible. The chemistry platform proposed could be easily extrapolated to binary and ternary III phosphides or arsenides with the homologous V source.  相似文献   
47.
At regular times, a satellite launcher company has to plan the use of its launcher to get the maximum profit. In a more formal way, the problem consists of selecting and scheduling a subset of unit-length jobs constrained by capacitated time slots so that the overall cost is a minimum. The data associated with each job are its weight, its time-window and its expected gain when it is performed. With each time slot are associated a setup cost and a capacity. The setup cost of a time slot is due when this time-slot is used to perform at least one job. Moreover the total weight of all jobs scheduled within a time slot is at most the time slot capacity. We first show that the general problem is hard and provide some easy special cases. We then propose a first dynamic-programming polynomial-time algorithm for the special case with unit weights. A second and more efficient dynamic programming algorithm is also provided for the special case of unit weights and agreeable time windows. This last algorithm is finally improved for the special case of equal gains.  相似文献   
48.
49.
Many MRI contrast agents formed with the parahydrogen-induced polarization (PHIP) technique exhibit biocompatible profiles. In the context of respiratory imaging with inhalable molecular contrast agents, the development of nonflammable contrast agents would nonetheless be highly beneficial for the biomedical translation of this sensitive, high-throughput and affordable hyperpolarization technique. To this end, we assess the hydrogenation kinetics, the polarization levels and the lifetimes of PHIP hyperpolarized products (acids, ethers and esters) at various degrees of fluorine substitution. The results highlight important trends as a function of molecular structure that are instrumental for the design of new, safe contrast agents for in vivo imaging applications of the PHIP technique, with an emphasis on the highly volatile group of ethers used as inhalable anesthetics.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号