首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   5篇
  国内免费   1篇
化学   71篇
力学   1篇
数学   9篇
物理学   9篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   6篇
  2018年   7篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   10篇
  2013年   14篇
  2012年   9篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   5篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
排序方式: 共有90条查询结果,搜索用时 46 毫秒
31.
An innovative procedure for functionalization of polyolefins was developed. It was found that synthesized polyolefins end‐capped with trimethoxysilane (silylated polyolefins) are new polyolefin‐based adhesives. To prepare the mentioned materials,1‐octene as a higher α‐olefin was cooligomerized with two linear, nonconjugated dienes (ie, 1,5‐hexadiene and 1,7‐octadiene) by using metallocene catalyst system, Cp2HfCl2/MAO, at room temperature. Then, amine‐terminated trimethoxysilane (3‐aminopropyltrimethoxysilane) was reacted with unsaturated bonds of synthesized cooligomers in the presence of palladium(II) acetate. Embedding of the dienes on 1‐octene oligomeric chains was explored by Fourier transform infrared (FTIR), 1H, and 13C‐NMR spectroscopy. On the basis of the results, 1,5‐hexadiene showed both 1‐butene branch and five‐member ring. On the other hand, 1,7‐octadiene was incorporated by 1,2‐addition, forming both 1‐hexene branch and seven‐member ring in the cooligomer backbone. Mole percentage of C?C and cyclic moieties reached to a value of 28.54, 18.59% mol in 1‐octene/1,5‐hexadiene, and 38.04, 6.71% mol in 1‐octene/1,7‐octadiene cooligomers, respectively. Reaction of synthesized cooligomers with 3‐aminopropyltrimethoxysilane was confirmed by FTIR spectroscopy, which yielded targeted adhesives. To study the adhesion properties, resulting adhesives were applied to different substrates. Obtained results demonstrated that tensile shear strength of synthesized adhesives to polar substrates was 2.21% to 2.84% more than nonpolar substrates. Among studied systems, the best performance was achieved by1‐octene/1,7‐octadiene–based adhesive and Al substrate with tensile shear strength of 1.45 N/mm2.  相似文献   
32.
In this study, a carbon paste electrode modified with (E)‐2‐((2‐chlorophenylimino)methyl)benzene‐1,4‐diol (CD) and titanium dioxide nanoparticles (TiO2) was used to prepare a novel electrochemical sensor. The objective of this novel electrode modification was to seek new electrochemical performances for the detection of isoproterenol (IP) in the presence of acetaminophen (AC) and folic acid (FA). Initially, cyclic voltammetry (CV) was used to investigate the redox properties of this modified electrode at various scan rates. In the following, the mediated oxidation of IP at the modified electrode was described. The results showed an efficient catalytic activity of the electrode for the electrooxidation of IP, which leads to a reduction in its overpotential by more than 235 mV. The value of the electron transfer coefficient (α), catalytic rate constant (kh) and diffusion coefficient (D) were calculated for IP, using electrochemical approaches. Based on differential pulse voltammetry (DPV), the oxidation of IP exhibited a dynamic range between 0.5 and 1000 µM and a detection limit (3σ) of 0.47 µM. DPV was used for simultaneous determination of IP, AC and FA at the modified electrode. Finally, this method was used for the determination of IP in real samples, using standard addition method.  相似文献   
33.
An analytical equation of state (EoS) has been previously employed by Hosseini and Sharafi (Ionics 17:511, 2011) for modelling of PVT data of some ionic liquids (ILs). In this work, we have extended the mentioned model to five classes of ILs by the use of alternative scaling constants for corresponding states correlation procedure. For this purpose, ILs involving imidazolium, phosphonium, pyridinium, pyrrolidinium and ammonium cations have been taken into account. From these, 1,294 experimental data points examined to show the reliability of the modified EoS. The comparison of predicted densities with the measured values over a broad range of temperature 293?C452 K and pressures up to 150 MPa led to the encouraging results. The average absolute deviation of calculated densities from literature values was found to be 0.73%. Moreover, to establish the predictive power of proposed model, the reproduced densities have been compared with those obtained by another literature work. Moreover, we have demonstrated the density behaviour of studied ILs in terms of alkyl chain length of imidazolium cation via proposed model.  相似文献   
34.
[(1,2,3-Triazol-4-yl)methoxy-phenyl]-2H-indazolo[2,1-b]phthalazine-trione derivatives were synthesized in a simple and efficient method from the one-pot four-component condensation reaction of phthalhydrazide, aromatic propargyloxy aldehydes, active methylene compounds (dimedone and 1,3-cyclohexanedione), and azides in the presence of Cu(OAc)(2)/sodium ascorbate and p-toluenesulfonic acid as catalysts in good to excellent yields.  相似文献   
35.
The high water solubility of poly (vinyl alcohol) (PVA) is one of the challenging problems in its application. In order to rectify this problem, PVA needs to be crosslinked. Freeze‐thawing in solid state as a novel physical crosslinking method was employed for enhancement the stability of PVA nanoparticles in aqueous solutions during this study. PVA nanoparticles were successfully prepared by electrospraying and electrospray conditions were optimized in the view points of polymer concentration and solvent system. The morphology of nanoparticles was tailored from collapsed particles and mixture of particles/fibers to spherical particle by manipulating of polymer solution concentration and solvent system. After preparation of PVA nanoparticles in optimum condition, they were frozen at ?20°C and subsequently thawed at 25°C for different cycles of 1, 2, and 3. Field‐emission scanning electron microscope (FE‐SEM), Fourier‐transform infrared (FTIR), X‐ray diffraction (XRD), differential scanning calorimeter (DSC), and biodegradation were used to evaluate the effect of freeze‐thawing on properties of PVA nanoparticles. FE‐SEM showed the spherical morphology of the PVA nanoparticles with sizes ranging from 200 to 300 nm. The FTIR spectroscopy indicated that the crystallinity of PVA nanoparticles increases after freeze‐thawing process. Moreover, by increasing the number of cycles, degree of crystallinity of nanoparticles increases. The XRD and DSC analysis of PVA nanoparticles again demonstrated the increasing of crystallinity of nanoparticles after freeze‐thawing process. The biodegradation behavior of PVA nanoparticles after freeze‐thawing exhibited the decreasing of degradation rate by increasing the number of cycles. Our overall results present a solvent‐less and safe method for crosslinking of PVA nanoparticles in solid state, which make it suitable for biomedical applications.  相似文献   
36.
Combinatorial drug therapies emerge among the most promising strategies to treat complex pathologies such as cancer and severe infections. Biocompatible nanoparticles of mesoporous iron carboxylate metal–organic framework (nanoMOFs) are used here to address the challenging aspects related to the coincorporation of two antibiotics. Amoxicillin and potassium clavulanate, a typical example of drugs used in tandem, are efficiently coincorporated with payloads up to 36 wt%. Due to the occurrence of two distinct pore sizes/apertures within the MOF architecture, each drug is able to infiltrate the porous framework and localize within separate compartments. Molecular simulations predict drug loadings and locations consistent with experimental findings. Drug loaded nanoMOFs that are internalized by Staphylococcus aureus infected macrophages are able to colocalize with the pathogen, which in turn leads to an alleviation of bacterial infection. The data also reveal potential antibacterial properties of nanoMOFs alone as well as their ability to deliver a high payload of drugs to fight intracellular bacteria. These results pave the way toward the design of engineered “all‐in‐one” nanocarriers in which both the loaded drugs and their carrier play a role in fighting intracellular infections.  相似文献   
37.
A novel and highly sensitive electrochemical immunosensor was developed for the detection of protein biomarker tumor necrosis factor‐alpha (TNF‐α) based on immobilization of TNF‐α‐antibody (anti‐TNF‐α) onto robust nanocomposite containing gold nanoparticles (AuNP), multiwalled carbon nanotubes (MWCNTs) and ionic liquid (1‐buthyl‐3‐methylimidazolium bis (trifluoromethyl sulfonyl)imide). Functionalized MWCNT‐gold nanoparticle was produced by one‐step synthesis based on the direct redox reaction. The electrochemical properties of nanocomposite were characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The anti‐TNF‐α was immobilized or entrapped in the nanocomposite and used in a sandwich type complex immunoassay with anti‐TNF‐α labeled with horseradish peroxidase as secondary antibody. Under optimum conditions, the immunosensor could detect TNF‐α in a linear range from 6.0 to 100 pg mL?1 with a low detection limit of 2.0 pg mL?1. The simple fabrication method, high sensitivity, good reproducibility, stability, as well as acceptable accuracy for TNF‐α detection in human serum samples are the main advantages of this immunosensor, which might have broad applications in protein diagnostics and bioassay.  相似文献   
38.
39.
Liquid-liquid-liquid microextraction (LLLME) in combination with HPLC and UV detection has been used as a sensitive method for the determination of ephedrine in urine samples. Extraction process was performed in a homemade total glass vial without using a Teflon ring, usually employed. Ephedrine was first extracted from 3.5 mL of urine sample (pH 12) into a microfilm of toluene/benzene (50:50). The analyte was subsequently back extracted into an acidic microdrop solution (pH 2) suspended in the organic phase. The extract was then injected into the HPLC system directly. An enrichment factor of 137 along with a good sample clean-up was obtained under the optimized conditions. The calibration curve showed linearity in the range of 0.01-50 mg/L with regression coefficient corresponding to 0.998. The LODs and LOQs, based on a S/N of 3 and 10, were 5 and 10 microg/L, respectively. The method was eventually applied for the determination of ephedrine in urine sample after oral administration of 5 mg single dose of drug.  相似文献   
40.
Two new diamines containing bulky anthraquinone pendant units were prepared via reactions of 1‐ and 2‐aminoanthraquinone with 3,5‐dinitrobenzoylchloride and a subsequent reduction of their nitro groups. A novel series of highly organosoluble poly(amide‐urea)s were synthesized from the reactions of the prepared diamines with various commercially available diisocyanates via a step‐growth addition reaction process in N‐methyl‐2‐pyrrolidone (NMP). The effects of two factors (time and temperature) on the reaction were studied to optimize the conditions for the preparation of high molecular weight polymers. All poly(amide‐urea)s were characterized by Fourier Transform Infrared (FTIR) and 1H‐nuclear magnetic resonance (NMR) spectroscopies and elemental analysis. The resulting poly(amide‐urea)s had inherent viscosities in the range of 0.54–0.73 dl/g. They exhibited excellent solubility in polar solvents. The temperature for 10% weight loss of the polymers in air was all above 285°C, their residues were more than 36% at 700°C in air, and their Tg values were in the range of 148–190°C. According to the wide‐angle X‐ray diffraction (WAXD), the polymers were almost amorphous. The optical properties of poly(amide‐urea)s measured by ultraviolet–visible (UV–Vis) spectroscopy showed absorption maxima at 303–429 nm. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号