首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   15篇
  国内免费   1篇
化学   131篇
晶体学   1篇
力学   1篇
数学   28篇
物理学   15篇
  2023年   1篇
  2022年   3篇
  2021年   10篇
  2020年   4篇
  2019年   5篇
  2018年   9篇
  2017年   4篇
  2016年   4篇
  2015年   7篇
  2014年   9篇
  2013年   14篇
  2012年   13篇
  2011年   19篇
  2010年   9篇
  2009年   7篇
  2008年   15篇
  2007年   10篇
  2006年   9篇
  2005年   11篇
  2004年   6篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有176条查询结果,搜索用时 781 毫秒
51.
Hexane was reacted in mixtures with excess hydrogen on 5% Rh on different supports: Al2O3 and SiO2, the latter catalyst in two states: after reduction at 603 K (LT) and after a prereduction at 1253 K (HT). The main reaction was hydrogenolysis. The catalysts were characterized with the fragment composition at different temperatures and hydrogen pressures. Two surface states could be distinguished: one with more hydrogen favored single rupture, the other with less hydrogen preferred multiple fragmentation. The transition between these states could be rather abrupt, as the surface hydrogen availability changed. The tendency to produce multiple fragments increased in the order Rh/Al2O3< Rh/SiO2-LT < Rh/SiO2-HT.  相似文献   
52.
High efficiency and selectivity, easy magnetic recovery and recycling, and use of air as the oxidant at atmospheric pressure are major objectives for oxidation catalysis in terms of sustainable and green processes. A tris(triazolyl) ligand, so far only used in copper‐catalyzed alkyne azide cycloadditions, was found to be extremely efficient in SiO2/γ‐Fe2O3‐immobilized palladium complexes. It was characterized by inductively coupled plasma (ICP) analysis, transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy‐dispersive X‐ray spectroscopy (EDX), and X‐ray photoelectron spectra (XPS) and found to fulfill the combined conditions for the selective oxidation of alcohols to aldehydes and ketones.  相似文献   
53.
Using low pressure plasma polymerization, nano-scaled oxygen-rich plasma polymer films (CO) were deposited onto pristine silicon wafers as well as on nitrogen-containing plasma polymer (CN) model surfaces. We investigate the influence of the nature of the substrate as well as a potential sub-surface effect emerging from the buried CO/CN interface, just nanometers below the surface. X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry revealed two important phenomena that occurred during the deposition of the terminal CO layer: (1) a strong degree of oxidation, already for 1 nm nominal thickness, and (2) a gradual transition in chemical composition between the two layers, clearly indicating that effectively a vertical chemical gradient results, even when a two-step coating process was applied. Such terminal gradient film structures were used to study film stability in aqueous environments. Molecular rearrangements were scrutinized in the top-surface in contact with water and we found that the top-surface chemistry and wetting properties of the oxygen-rich termination layer matched those of thick CO reference coatings. Nevertheless, the adsorption of green fluorescent protein (GFP) was observed to be sensitive to the CO terminal layer thickness. Namely, an enhanced protein adsorption was observed for 1–2 nm thick CO layers on CN, whereas a significantly reduced protein adsorption was seen on ≥?3 nm thick CO terminal layers. We conclude that both, surface and sub-surface conditions significantly affect protein adsorption as opposed to the traditional consideration of surface properties alone.  相似文献   
54.
55.
56.
Lanthanide-binding peptides are very attractive for the design of bioprobes. Indeed, they combine the amazing properties of lanthanide ions, such as their time-resolved luminescence (Eu, Tb) or electronic relaxation (Gd) to the characteristics of the peptide scaffold, such as large solubility in water and ability to recognize biological substrates. Peptides derived from natural amino acids are reviewed in a first section. Some of their lanthanide complexes have already demonstrated their efficiency in determining protein structures and functions. Then, we will show how insertion of chelating unnatural amino acids modulates peptide-lanthanide complexes properties, such as luminescence and stability.  相似文献   
57.
58.
Fe‐N‐C catalysts containing atomic FeNx sites are promising candidates as precious‐metal‐free catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. The durability of Fe‐N‐C catalysts in fuel cells has been extensively studied using accelerated stress tests (AST). Herein we reveal stronger degradation of the Fe‐N‐C structure and four‐times higher ORR activity loss when performing load cycling AST in O2‐ vs. Ar‐saturated pH 1 electrolyte. Raman spectroscopy results show carbon corrosion after AST in O2, even when cycling at low potentials, while no corrosion occurred after any load cycling AST in Ar. The load‐cycling AST in O2 leads to loss of a significant fraction of FeNx sites, as shown by energy dispersive X‐ray spectroscopy analyses, and to the formation of Fe oxides. The results support that the unexpected carbon corrosion occurring at such low potential in the presence of O2 is due to reactive oxygen species produced between H2O2 and Fe sites via Fenton reactions.  相似文献   
59.
New synthetic strategies for molecularly imprinted polymers (MIPs) were developed to mimic the flexibility and mobility exhibited by receptor/enzyme binding pockets. The MIPs were prepared by bulk polymerization with quercetin as template molecule, acrylamide as functional monomer, ethylene glycol dimethacrylate as cross‐linker, and THF as porogen. The innovative grafting of specific oligoethylene glycol units onto the imprinted cavities allowed MIPs to be obtained that exhibit extended selectivity towards template analogues. This synthetic strategy gives promising perspectives for the design of molecular recognition of molecules based on a congruent pharmacophore, which should be of interest for drug development.  相似文献   
60.
Gas-phase hydrogen/deuterium exchange of small oligonucleotides (dTG, dC(6) and C(6)) with CD(3)OD was performed in the second hexapole of a Fourier transform ion-cyclotron resonance (FTICR) mass spectrometer. Ion activation experiments were conducted by accelerating the ions at the entrance of the H/D exchange cell under conditions promoting exclusively collisional isomerization. These experiments allowed us to assess the presence of several conformers, and to probe the height of the isomerization barrier separating these conformers. Ion mobility experiments were also performed. Their results were consistent with the H/D exchange data. A model accounting for the competing isomerization and H/D exchange reactions is proposed. Comparing the ion acceleration experiments for H/D exchange and for ion mobility reveals that the most compact conformer displays the fastest H/D exchange. This observation shows that H/D exchange and ion mobility provide us with complementary information because hydrogen accessibility and macromolecule compactness are not univocally associated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号