首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   421篇
  免费   3篇
  国内免费   2篇
化学   205篇
晶体学   13篇
力学   13篇
数学   83篇
物理学   112篇
  2023年   2篇
  2021年   6篇
  2020年   4篇
  2019年   4篇
  2018年   12篇
  2017年   7篇
  2016年   13篇
  2015年   12篇
  2014年   10篇
  2013年   22篇
  2012年   24篇
  2011年   22篇
  2010年   17篇
  2009年   19篇
  2008年   26篇
  2007年   17篇
  2006年   19篇
  2005年   27篇
  2004年   10篇
  2003年   16篇
  2002年   13篇
  2001年   11篇
  2000年   5篇
  1999年   4篇
  1998年   11篇
  1997年   6篇
  1996年   2篇
  1994年   2篇
  1992年   5篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1985年   2篇
  1980年   4篇
  1979年   3篇
  1977年   2篇
  1975年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1962年   1篇
  1961年   1篇
  1960年   2篇
  1959年   8篇
  1958年   10篇
  1957年   9篇
  1956年   2篇
  1955年   8篇
  1954年   4篇
排序方式: 共有426条查询结果,搜索用时 31 毫秒
421.
In single crystals of the beryllium silicate Be2SiO4 with trigonal symmetry , known also as the mineral phenakite, χ(3)‐nonlinear lasing by stimulated Raman scattering (SRS) is investigated. All observed Stokes and anti‐Stokes lasing components are identified and ascribed to a single SRS‐promoting vibration mode with ωSRS ≈876 cm−1. With picosecond single‐wavelength pumping at one micrometer the generation of an octave‐spanning Stokes and anti‐Stokes comb is observed.  相似文献   
422.
In contrast to former morphological studies, the results presented here show that calcium(II) thio­sulfate hexahydrate, CaS2O3·6H2O, crystallizes centrosymmetrically in the pinacoidal class (point group ). The structure is characterized by chains, parallel to [100], of alternating S2O3 and Ca(H2O)6O2 groups sharing common O atoms. The composition of each chain link is [Ca(H2O)6(S2O3)]. The geometry is analysed and compared in detail with the structural features of monoclinic strontium(II) thio­sulfate pentahydrate, SrS2O3·5H2O, which forms layers, parallel to (100), of alternating S2O3 and Sr(H2O)4O5 groups connected via common O atoms and O–O edges. Each layer contains [Sr(H2O)3O(S2O3)] as the unique repeat unit.  相似文献   
423.
The crystal structures of three compounds of glycine and inorganic materials are presented and discussed. The ortho­rhombic structure of glycinesulfatodilithium(I), [Li2(SO4)(C2H5NO2)]n, consists of corrugated sheets of [LiO4] and [SO4] tetrahedra. The glycine mol­ecules are located between these sheets. The main features of the monoclinic structure of di­aqua­di­chloro­glycinenickel(II), [NiCl2(C2H5NO2)(H2O)2]n, are helical chains of [NiO4Cl2] octahedra connected by glycine mol­ecules. The orthorhombic structure of tri­aqua­glycinesulfatozinc(II), [Zn(SO4)(C2H5NO2)(H2O)3]n, is made up of [O3SOZnO5] clusters. These clusters are linked by glycine mol­ecules into zigzag chains. All three compounds are examples of non‐centrosymmetric glycine compounds.  相似文献   
424.
We consider a general two-component plasma of classical pointlike charges \(+e\) (e is say the elementary charge) and \(-Z e\) (valency \(Z=1,2,\ldots \)), living on the surface of a sphere of radius R. The system is in thermal equilibrium at the inverse temperature \(\beta \), in the stability region against collapse of oppositely charged particle pairs \(\beta e^2 < 2/Z\). We study the effect of the system excess charge Qe on the finite-size expansion of the (dimensionless) grand potential \(\beta \varOmega \). By combining the stereographic projection of the sphere onto an infinite plane, the linear response theory and the planar results for the second moments of the species density correlation functions we show that for any \(\beta e^2 < 2/Z\) the large-R expansion of the grand potential is of the form \(\beta \varOmega \sim A_V R^2 + \left[ \chi /6 - \beta (Qe)^2/2\right] \ln R\), where \(A_V\) is the non-universal coefficient of the volume (bulk) part and the Euler number of the sphere \(\chi =2\). The same formula, containing also a non-universal surface term proportional to R, was obtained previously for the disc domain (\(\chi =1\)), in the case of the symmetric \((Z=1)\) two-component plasma at the collapse point \(\beta e^2=2\) and the jellium model \((Z\rightarrow 0)\) of identical e-charges in a fixed neutralizing background charge density at any coupling \(\beta e^2\) being an even integer. Our result thus indicates that the prefactor to the logarithmic finite-size expansion does not depend on the composition of the Coulomb fluid and its non-universal part \(-\beta (Qe)^2/2\) is independent of the geometry of the confining domain.  相似文献   
425.
426.
The Riesz potential f s ( r ) = r s $f_s(r)=r^{-s}$ is known to be an important building block of many interactions, including Lennard-Jones–type potentials f n , m LJ ( r ) : = a r n b r m $f_{n,m}^{\rm {LJ}}(r):=a r^{-n}-b r^{-m}$ , n > m $n>m$ that are widely used in molecular simulations. In this paper, we investigate analytically and numerically the minimizers among three-dimensional lattices of Riesz and Lennard-Jones energies. We discuss the minimality of the body-centered-cubic (BCC) lattice, face-centered-cubic (FCC) lattice, simple hexagonal (SH) lattices, and hexagonal close-packing (HCP) structure, globally and at fixed density. In the Riesz case, new evidence of the global minimality at fixed density of the BCC lattice is shown for s < 0 $s<0$ and the HCP lattice is computed to have higher energy than the FCC (for s > 3 / 2 $s>3/2$ ) and BCC (for s < 3 / 2 $s<3/2$ ) lattices. In the Lennard-Jones case with exponents 3 < m < n $3<m<n$ , the ground state among lattices is confirmed to be an FCC lattice whereas an HCP phase occurs once added to the investigated structures. Furthermore, phase transitions of type “FCC-SH” and “FCC-HCP-SH” (when the HCP lattice is added) as the inverse density V increases are observed for a large spectrum of exponents ( n , m ) $(n,m)$ . In the SH phase, the variation of the ratio Δ between the interlayer distance d and the lattice parameter a is studied as V increases. In the critical region of exponents 0 < m < n < 3 $0<m<n<3$ , the SH phase with an extreme value of the anisotropy parameter Δ dominates. If one limits oneself to rigid lattices, the BCC-FCC-HCP phase diagram is found. For 2 < m < n < 0 $-2<m<n<0$ , the BCC lattice is the only energy minimizer. Choosing 4 < m < n < 2 $-4<m<n<-2$ , the FCC and SH latices become minimizers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号